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1. Objective 

This session presents ALOE’s computing resource management framework. You will 
learn how to use the framework, change its parameters, and create custom waveform 
and platform models. 
 

2. Overview 

- Introduction to computing resource management 
 

- ALOE’s computing system modeling and management 
 

- Download and use the computing resource management framework 
 

- Create custom application and platform models 
 

- Exercises 
 

3. Requirements 

- C compiler 
 

- Basic C programming skills 
 

4. Versions 

We continuously evolve the ALOE framework and tools. Consult 
http://flexnets.upc.edu/trac/wiki/ResourceManagement for the latest version of the 

http://flexnets.upc.edu/trac/wiki/ResourceManagement
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computing resource management framework. This session does not require the 
download and installation of ALOE. 

5. Procedure 

5.1. Introduction 

In the early 90s Mitola envisaged radio transmitters and receivers (transceivers) that 
implement the entire signal processing chain in software. He coined this vision 
software radio. Software radio describes multistandard, multiservice, and multiband 
radio systems, which are software-reconfigurable. Software-defined radio (SDR) is a 
generalization of Mitola’s software radio, as it describes transceivers that implement 
part of their physical layer processing in software. 
 
SDR introduces flexibility to wireless systems: It permits adjusting or switching a 
terminal’s radio access technology (RAT) implementation for adapting to changes in 
the heterogeneous radio environment. SDR platforms stand for software-
programmable computing equipment, including handset transceivers, base stations, 
and core networks. SDR applications or waveforms refer to RAT-specific digital signal 
processing chain. Reconfiguring an SDR platform to execute another SDR application 
can then change radio communications link characteristics or even the entire radio 
standard. Dynamic RAT switches or modifications during communications sessions are 
also envisaged. 
 
SDR presents a hard real-time computing challenge. The computing constraints 
increase as wireless systems evolve. Therefore, the flexibility of SDR terminals and 
network elements is a function of the computing resource managers, which need to 
continuously track the states of the computing resources and assign them properly. 
 
An SDR application is the part of an SDR transceiver that is implemented in software. It 
consists of a set of concurrent processes that continuously process and propagate real-
time data. Such a processing chain is not specifically tailored but rather executable on 
any general-purpose platform with sufficient computing capacity. Because of the 
similarities between future SDR applications and platforms and today’s general-
purpose computing applications and platforms, we consider general-purpose 
computing methods practical for SDR systems. We particularly think that the 
introduction of appropriate mapping and scheduling techniques will leverage the 
design of SDR platforms and applications. Mapping (matching in heterogeneous 
computing literature) describes the process of assigning software modules to 
hardware resources, whereas scheduling determines the execution times of these 
modules. Mapping and scheduling are two complementary computing resource 
management methods that facilitate a dynamic computing resource allocation under 
the given constraints. 
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5.2. ALOE’s computing resource management framework 

ALOE features a computing resource management (CRM) framework that permits a 
flexible and dynamic management of different types of computing system constraints 
and objectives. ALOE’s CRM framework consists of several modules (Fig. 1). The basis 
for the resource management is ALOE’s time management (Section 5.2.1). 
 
The computing system modeling (Section 5.2.2) creates suitable models of SDR 
platforms and applications, capturing all relevant computing resources and 
requirements. 
 
The computing resource management (Section 5.2.3) is based on the use of a general-
purpose mapping algorithm and external cost functions. It manages (allocates, keeps 
track of, and updates) the available computing resources as a function of the 
computing requirements and management policy. 

 

Cost
Function

Mapping
Algorithm

SDR
Platform
Modeling

SDR
Application
Modeling

Management
Policy

Management
Algorithm

Platform Models
(Computing resources)

Application Models
(Computing requirements)

Computing Resource Management

Computing System Modeling  
Figure 1 - CRM organization. 

5.2.1. Time management 

Metrics 
An SDR platform represents an SDR mobile terminal or an SDR network element. These 
platforms comprise a few or many heterogeneous processing devices, such as FPGAs, 
DSPs, and GPPs, which communicate with each other. An FPGA’s prime resource is the 
logic area for parallel processing, which can be converted to multiply-accumulate 
operations (MACs) per time unit when using well-defined benchmarks (filter, FFT, and 
so forth). DSP, GPP, and MP-SoC performances are typically given in million 
instructions per second (MIPS). 
 
The processing powers and the inter-processor bandwidths are the primary resources 
of SDR platforms. We consider million operations per second (MOPS) as the basic unit 
for characterizing the processing powers and mega-bits per second (Mbps) for the 
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(inter-)processor communication capacities. We correspondingly apply the same 
metrics for capturing SDR applications' processing and data flow requirements. The 
implicit timing requirements need to be specified as a function of the radio link timing 
requirements. 
 
Time-Slot Division and Pipelining 
We consider processing time as just another limited computing resource. MOPS and 
Mbps embed this critical resource and thus permit an implicit time management. In 
continuation we discuss two mechanisms that ease the computing resource 
management. 
 
Data that is transmitted or received over the wireless link needs to be processed for as 
long as there is data to transmit or receive. An SDR application will execute during the 
entire user session or until it is exchanged by another one. We thus propose breaking 
up the continuous execution into periodic executions by dividing the computing 
resource time in equidistant computing time slots and the SDR application in pipelining 
stages. Figure 2 illustrates this. 
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External
Link

P2 O3

O1 O2O2O1

Data T O1 to O2

O1 O2

O3 O4

Data T O1 to O2 Data T O1 to O2
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O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O5

Objects mapped to 
Processor 1 (P1) 

Objects mapped to 
Processor 2 (P2)

O1 O2 O4

O3

O5

(stage 1) (stage 2) (stage 3) (stage 4)

 
Figure 2 - Time slots and pipelining. 

 
The pipelined execution of an SDR application establishes that, in any time slot, all SDR 
functions process and propagate some part of the data. That is, the same processing 
and data transfers repeat each time slot on a different data portion (Figure 2). We can 
then derive the new units million operations per time slot (MOPTS) and mega-bits per 
time slot (MBPTS) as t ∙ MOPS and t ∙ Mbps, where t is the time slot duration that is 
specified as a function of the latency requirements and the number of pipelining 
stages (see next subsection). MOPTS and MBPTS are the basic units for the SDR 
computing system modeling (Section 5.2.2). 
 
Scheduling: Meeting the Real-Time Computing Constraints 
The computing resource management facilities and our computing system modeling 
permit mapping an SDR application to an SDR platform on time slot basis, that is, the 
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assignment of computing requirements to computing resources within a single time 
slot frame. 
 
We assume that coprocessors facilitate the concurrent data processing and data 
propagation on all processor’s in- and outputs. Since repetitive operations on data 
samples and continuous outputs, often one per execution cycle, characterize digital 
signal processing, we may further assume that the software and hardware facilitate 
the immediate propagation of processed data samples. The SDR framework finally 
needs to manage the synchronized execution on all processors and provide pipelining 
and buffering mechanisms, among others, for the proper and timely data delivery. 
ALOE provides these mechanisms. 
 
On the basis of a feasible mapping—a mapping that reserves no more than 100 % of 
any available computing resource—and under the above assumptions, the usually 
complex scheduling process can then be simplified to N independent local scheduling 
tasks. A processor’s local scheduler need to organize the execution sequence of the 
corresponding SDR functions and their data transfers within the time-slot boundaries. 
A feasible mapping and a suitable scheduling ensures that the input data of any SDR 
application’s module or set of modules is processed according to its arrival rate and 
without excessive data buffering, meeting the minimum bit rate requirement. The time 
slot duration provides direct control over the pipelining latency [2]; scheduling is a 
complementary tool for controlling the processing latency. 

5.2.2. Computing system modeling 

The SDR computing system modeling consists of the platform modeling and the 
application modeling. The platform modeling characterizes SDR platforms and their 
computing resources, whereas the application modeling abstracts SDR applications 
and their computing requirements. We identify four relevant types of computing 
resources: processing, bandwidth, memory and energy resources. The computing 
requirements correspondingly include the processing, dataflow, memory and energy 
demands. The following models address processing and interprocessor bandwidth 
capacities and requirements. These models are the basis for the computing resource 
management (Section 5.2.3). 
 

Platform Modeling (Computing Resources) 

The framework assumes an SDR platform model consisting of N interconnected 
processors P1, P2, ..., PN. The device model 

 C = (C1, C2, …, CN) [MOPTS] (1) 

is an N-element vector that captures the distributed processing capacities. The 
communication model,  
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is an N times N matix, specifying the inter- and intraprocessor bandwidth capacities. 
Bxy indicates the available bandwidth for moving data from processor Px to processor 
Py. We assume that interprocessor bandwidths can be modeled as if they were infinite.  
 
Bx thus informs about the communication topology (interconnectivity network) and 
the communication resources (bandwidths), assuming a network that consists of 
unidirectional communication links between each pair of processors. Additional 
information is needed for modeling shared links. We therefore suggest a more general 
communication modeling that distinguishes between the communication topology (3) 
and the communication resources (4). 

 I = 
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represents the logical interconnection model, where Iuv  1, 2, …, N·N is a unique 
numerical label of the logical link between Pu and Pv. A logical link corresponds to a 
directed (unidirectional) communication line between a pair of processors. These 
logical links map to physical link bandwidths 

 B = (B1, B2, …, BN, BN+1, …, BN·N ) = (∞,∞, …, ∞, BN+1, …, BN·N ) [MBPTS]. (4) 

Bu, where u = I32 for instance, is the maximum bandwidth that is available for the 
directed data transfer from the local data memory of processor P3 to the local data 
memory of processor P2. It would be zero if the physical link is unavailable or 
nonexistent. The first N elements of B, B1 to BN, capture the processor-internal 
communication resources of processor P1 to PN; hence, Iuu  1, 2, …, N. Since 
processor-internal data movements are typically orders of magnitude faster than 
processor-external data transfers, we can label logical links so that B1 ≥  B2 ≥  B3 ≥  … ≥  
BN·N. Unused elements of B are filled with 0s [1]. 
 
The CRM framework accepts both models, but internally uses I and B, which can be 
generated from Bx for certain interprocessor communication topologies: dedicated 
links between processor pairs (full- or half-duplex) or a single shared bus per platform. 
 

Application Modeling (Computing Requirements) 

SDR applications or waveforms are digital signal processing chains that consists of the 
M SDR functions f1, f2, ..., fM. Filters, equalizers, or decoders are example SDR 
functions. Without loss of generally, we consider an SDR function as an indivisible 
software process. That is, any SDR function will execute without preemption on a 
single processor. The definition of processing blocks remains at the modeling level. 
Two different models of the same waveform are then considered as two waveforms by 
the computing resource manager. 
 
The function model, 

 c = (c1, c2, ..., cM) [MOPTS], (5) 
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provides their processing requirements, whereas the dataflow model, 

 b = 
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indicates the precedence constraints between SDR functions as well as the data flow 
bandwidth requirements: bxy > 0 indicates a data dependency between fx and fy. More 
precisely, process fx sends data to process fy and requires a bandwidth of b12 MBPTS 
for this data transfer. Since modeling SDR applications as directed acyclic graphs 
(DAGs), we can apply the logical numbering principle (if fx sends data to fy, then x<y) 
and b becomes a strictly upper diagonal matrix [1]. 

5.2.3. Computing resource management 

The computing resource management relies on the computing system modeling. 
Figure 3 illustrates this relation. The framework features different mapping algorithms. 
All algorithms are general-purpose as they allow applying different cost functions or 
optimization criteria. 
 
A mapping algorithm distributes the application modules among the limited and 
distributed computing resources. Consider, for example, the application model of 
Figure 8b in the appendix and the platform model of Figure 8c. The computing 
resource management problem here consists of allocating processor resources and 
communication facilities to the 24 applications modules and their data flows under the 
given computing constraints (limited resources and hard real-time requirements). 
 
The tw-mapping was introduced in [2] and is fully described in [1]. The following 
subsection provides a summary. The gw-mapping is an extended or parameterized 
greedy algorithm. The generally low computing complexity makes the gw-mapping 
applicable for large-scale computing resource management problems. It also serves as 
a baseline algorithm for evaluating the tw-mapping results [1]. 
 
The opt-mapping does an exhaustive search over the entire solution space for finding 
the mapping of minimum cost for the given problem and cost function. The long 
execution times for reasonable problem sizes limit the applicability of the opt-
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Figure 3  - Management interactions. 
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mapping. The problem size is defined by the number of processors (N) and processes 
(M): There are NM different mappings of M processes to N processors. Table 1 
indicates some mappings of 4 processes to 2 processors. 
 

Table 1 - The different mappings solutions for N = 2 processors and M = 4 processes. 
 

Mapping Digital representation 

f1, f2, f3, f4   P1 

 
0  0  0  0 

f1, f2, f3  P1 

f4  P2 
0  0  0  1 

f1, f2, f4  P1 

f3  P2 
0  0  1  0 

f1, f2  P1 

f3, f4  P2 
0  0  1  1 

f1, f3, f4  P1 

f2  P2 
0  1  0  0 

f1, f3  P1 

f2, f4  P2 
0  1  0  1 

f1  P1 

f2, f3, f4  P2 
0  1  1  1 

f2, f3, f4  P1 

f1  P2 
1  0  0  0 

f2, f3  P1 

f1, f4  P2 
1  0  0  1 

… … 
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Figure 4 - tw-mapping diagram and examined paths at t-node {P1, fi}. 
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The tw-mapping 

The tw-mapping is a general-purpose mapping algorithm. It is a windowed dynamic 
programming algorithm, where w indicates the window size. The mapping process is 
organized by the tw-mapping diagram, which contains a trellis of N times M (row times 
column) t-nodes. A t-node is identified as {Pj, fi} and absorbs the mapping of SDR 
function fi to processor Pj. Any t-node at step i (column i in the tw-mapping diagram) 
connects to all t-nodes at step i+1. The sequence of processors [Pk(0) Pk(1) ... Pk(w)]i 
identifies the w-path, a path of length w, that is associated with t-node {Pk(1), fi}, where 
Pk(0) is the w-path’s origin processor at step i–1 and Pk(w) the destination processor at 
step i+w–1. 
 

The main feature of the tw-mapping is that it is cost function independent. That is, any 
cost function can, in principle, be applied. The cost function guides the mapping 
process. It is responsible for managing a platform’s available computing resources and 
an application’s real-time processing requirements. 
 
The algorithm sequentially pre-assigns, or pre-maps, processes to processors, starting 
with SDR function f1 and finishing with SDR function fM (parts I and II of the algorithm). 
This is followed by a post processing that determines the final mapping (part III). 
 

tw-mapping, part I 

Part I consists of pre-mapping SDR function f1 to all N processors and storing the pre-
mapping costs at t-nodes {P1, f1} through {PN, f1}. Costs are computed due to some cost 
function, which is externally defined. 
 

tw-mapping, part II 

At step i of part II (2 ≤ i ≤ M–w+1) the tw-mapping examines all Nw w-paths that are 
associated with {Pk(1), fi}. These w-paths originate at a t-node of step i–1, pass through 
{Pk(1), fi}, and terminate at a t-node of step i+w–1. Figure 4 illustrates this for Pk(1) = P1. 
 
In case that i < M–w+1, the algorithm highlights the edge between a t-node at step i–1 
and t-node {Pk(1), fi)} that corresponds to the minimum-cost w-path. The minimum-cost 
w-path is the path that is associated with the minimum accumulated cost due to the 
corresponding pre-mappings of f1, f2, ..., and fi+w–1, where the w-path’s origin t-node 
provides the pre-mapping information of f1 to fi–1. The algorithm then stores the cost  
and the remaining resources up to t-node {Pk(1), fi} at {Pk(1), fi}. After processing all t-
nodes at step i, the algorithm considering those at step i+1. 
 
If i = M–w+1, however, the complete w-path of minimum cost is highlighted. The total 
cost and the remaining resources are then stored at {Pk(1), fM–w+1}. After finishing the 
processing of all N t-nodes at step M–w+1, part III of the algorithm starts. 

 

tw-mapping, part III 

Part III tracks the tw-mapping diagram backward and forward along the highlighted 
edges, starting at the minimum-cost t-node at step M–w+1. This process finds the 
complete mapping solution for the given problem and cost function. 
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The Cost Function 

The cost function is responsible for managing the available computing resources of 
SDR platforms, trying to allocate the required resources to SDR applications. We 
generally define it as the sum of weighted cost terms, where each cost term captures 
the relation between the required and available resource of a specific type. Each of 
these terms must not be greater than 1. Otherwise, more resources would be 
allocated than available. Hence, the cost function computes the pre-mapping cost as a 
function of the remaining and the required resources. This implies dynamic resource 
updates (Figure 3). 
 
For managing the processing and interprocessor bandwidth resources we define the 
cost function as 

 cost = q · cost_comp + (1–q) · cost_comm. (7) 

This two-term cost function manages the available processing and bandwidth 
resources, while trying to meet the corresponding computing resource requirements. 
Weight q is defined in interval [0, 1]. It defines the relative importance of the 
computation cost with respect to the communication cost. 
 
Equation (7) represents the basic cost function. Additional weights are introduced in 
[3] and are available within the CRM framework. 

5.3. Download and use the CRM framework 

Go to http://flexnets.upc.edu/trac/wiki/ResourceManagement and download the CRM 
framework sources. Extract (unzip) the files, which are listed in Figure 7 in the 
appendix. The framework is completely implemented in C. You can view and modify 
these files using a text editor. 
 
The api_test.h file defines several constants. You can choose among the umts, umts2, 
IEEE, Frequenz, three_proc, four_proc, two_dim, three_dim, or custom scenario. We 
briefly introduce these scenarios below. 

5.3.1. CRM scenarios 

The umts scenario corresponds to the first scenario presented in [2] or [1, Section 5.2]. 
It assumes part of an UMTS downlink receiver processing chain (chip- and bit-rate 
processing blocks) to be mapped to four SDR platform models of 3 processors each. 
The UMTS waveform and the four platforms are defined in umts_models.c. 
 
The umts2 scenario defines the bit-rate signal processing chain of a single-user 
WCDMA transmitter and receiver. The model is obtained from execution time 
measurements of the corresponding implementation (see umts2_models.c). 
 
The IEEE scenario reflects the second simulation scenario of [2] or [1, Section 5.3]. The 
file IEEE_models.c specifies the four platform models of [2] and two additional models 
based on a shared bus communication network. The application models—data flow 
dependencies and processing and bandwidth requirements—are randomly generated 

http://flexnets.upc.edu/trac/wiki/ResourceManagement
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based on a set of parameters (see api_test.c and iapi_test.h). They correspond to 
random directed acyclic graphs (DAGs). 
 
Frequenz defines the simulation scenario of [4]. It creates 100,000 random DAGs, 
representing the computing models of different SDR applications. These DAGs are 
mapped to 9 SDR platform models defined in Frequenz_models.c. 
 
The three_proc and four_proc constants define two platform models of 3 and 4 
processors each (see three_processor_models.c and four_processor_models.c). The 
application models correspond to random DAGs. 
 
The scenarios two_dim and three_dim define regular two- and three-dimensional 
arrays of processors, a mesh network (two_dim_models.c) and a hypercube 
(three_dim_models.c). The application models are, again, randomly generated. 
 
The custom scenario defines custom SDR platform and application models. A two-
processor platform model and a simple application model are defined in 
custom_models.c. You will edit this file later on in this session. 

5.3.2. The UMTS scenario 

Choose the UMTS scenario by setting the umts constant in api_test.h. Figure 8 
illustrates the platform and application models of this scenario. Make sure to select 
only one scenario in api_test.h. Now compile and link the source codes. If you are 
using Linux, open a terminal, switch to the folder where you extracted the files and 
type 
 
 

gcc -O3 -o mapping *.c 
 

 
You can now execute the just compiled program with seven optional parameters: 
 
 

./mapping [alg] [w] [q] [c_load] [b_load] [order] [k] 
 

 
The first parameter (alg) specifies the algorithm: gw-mapping (0), tw-mapping (1), or 
opt-mapping (2). The tw-mapping is chosen in api_test.h as the default algorithm. The 
second parameter (w) defines the window size of the gw- or tw-mapping (Section 
5.2.3). The default value is 1. The third parameter modifies the cost function 
parameter q, which is initially set to 0.5. The fourth and fifth parameters specify the 
desired c_load and b_load, which we discuss later. The order indicates the mapping 
order. If 1 or 2 is passed as the input parameter, the waveform modeling matrices are 
processed in such a way that application modules are mapped in the order of 
decreasing processing (1) or bandwidth (2) requirements. The final parameter (k) 
indicates if an automatic cost function parameter weighting is applied; see [3] for 
details. 
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Execute mapping without any parameters. Figure 5 shows the output that you should 
observe. The first lines provide some information about the test suite and the 
employed mapping algorithm, window size, cost function parameter, and so forth. In 
this case, we have executed the t1-mapping with q = 0.5. The mapping results are 
shown for each of the four platforms. Since only one application model is mapped to 4 
platform models 0.0000 % indicates a feasible mapping solution, whereas a 100.0000 
% would mean an infeasible mapping. 
 
Figure 5 - Output. 
 

This test suite applies the tw-, gw-mapping or optimal mapping 

algorithm on different mapping scenarios. 

Scenario and mapping options can be modified in "api_text.h". 

Execution parameters are the algorithm window size 'w' and the cost 

function parameter 'q'. 

w = 1, 2, 3, ..., min{Wmax, M-1} - default: w = 1. Wmax = 5 (mapper.h) 

and the number of application modules M = 24 (api_test.h). 

q = 0, ...,1 - default: q = 0.5. 

weighting = 0 (no additional cost function weighting), 1 (static 

weights), 2 (dynamic weights). 

Additional parameters are the processing and bandwidth loads (c_load, 

b_load), which are used for scaling the computing resources (0: no 

scaling). 

 

**************************** 

*   t1-mapping q = 0.50   * 

**************************** 

 

 * c-load = 0.00 

 * b-load = 0.00 

 * Mapping in original (logical) order of processing blocks (no_ord) 

 

Platform 1:  0.0000 % infeasible mappings 

Platform 2:  0.0000 % infeasible mappings 

Platform 3:  0.0000 % infeasible mappings 

Platform 4:  0.0000 % infeasible mappings 

 

Total processing demand (in the mean): 23247.16 MOPS 

Total bandwidth demand (in the mean): 7030.22 Mbps 

No. of skipped graphs:    0 

 

====================================== 

 

 
Now uncomment line 430 in api_test.c: 
 
 

print_mapping(mapping, preproc.ord); 
 

 
This function prints the processor allocation (mapping) and the cost of that solution. 
Save, compile, and execute the program again. Observe the different solutions for the 
same SDR application, but four different platforms. 
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Table 2 - Processing load parameters. 

Parameter Description 

cT Application’s total processing requirement: sum of the 
M processing requirements of SDR functions f1 to fM 

CT Platform’s total processing capacity: sum of the N 
processing resources of processors P1 to PN 

sfC Scaling factor: scales the platform’s processing 
resources C1 to CN 

 
The UMTS scenario is limited to a single application and four platform models. To 
simulate different computing system constraints, we introduce the processing and 
bandwidth loads—c_load and b_load—which relate the application’s total processing 
and bandwidth requirements to the platform’s total processing and bandwidth 
resources: 

 c_load = 
TC

T

Csf

c


 , (8)  

 b_load = 
TB

T

Bsf

b


 . (9) 

The processing load parameters are defined in Table 2. The scaling factors sfC and sfB 
scale the platform’s initial processing and bandwidth resources. They are computed 
from (8) and (9) and the desired c_load and b_load. Try executing the same scenario 
with different processing and bandwidth loads—(c_load, b_load) = (0.5, 2.25) or (0.95, 
1.25), for example: 
 
 

mapping 1 1 0.5 0.5  2.25 

mapping 1 1 0.5 0.95 1.25  
 

 
Try increasing the window size to w = 4, for example, and repeat the last case: 
 
 

mapping 1 4 0.5 0.95 1.25  
 

 
Observe that the mapping problem is now feasibly solved for platform 4. That is, the 
proposed mapping solution meets the SDR application’s real-time computing 
requirements with the available resources. You can observe the remaining resources 
using the function print_resources(). Therefore, simply uncomment line 433 in 
api_test.c:  
 
 

print_resources(mapping); 
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Do not forget to create a new executable file as any change in the codes requires 
recompilation and relinking to become effective. 

5.4. Create custom computing system models 

The custom_models.c file has been defined for exemplifying the introduction of new 
SDR application and platform models. Open the file in a text editor. The platform 
model corresponds to that of Figure 6a. The application model is only partially defined. 
Edit the corresponding sections—highlighted in Figure 9 in the appendix—to define 
the application model of Figure 6b. Note that in the C programming language, array 
elements are indexed from 0. m_unsort[0] then corresponds to the processing 
requirement of SDR function f1, m_unsort[1] to that of f2, and so forth. 
b_unsort[0][3], for example, stands for the minimum bandwidth requirement for 
the data flow from f1 to f4. 

1

0.5

f1

f2 f3

f4

2

1.5 0.5

0.5

4 3

1.5

1.5

P1 P2

(a) (b)  
Figure 6 - Custom computing system models. 

 
Deselect the umts scenario and select the custom scenario. That is, open api_test.h 
and set the umts constant to 0 and the custom constant to 1. Compile and execute the 
program: 
 
 

gcc -O3 -o mapping *.c 

./mapping 
 

 
Does the mapping correspond to that of Fig. 4.13 of [1, page 58]? (The mapping cost 
should be q · 2.75 = 1.375 here.) 
 
Choose another algorithm or window size and run the simulation again. 

6. Exercises 

1. How many different mapping solutions exist for an SDR application of 21 
functions and an SDR platform of 2 processors? And for 21 processes and 4 
processors? Assuming 3 processors and 21 processes, how does the framework 
represent the following mapping: 

 f1, f2, …, f8 –> P1 

 f9, f11, f13, f15, f17, f19, f21 –> P2 

 f10, f12, f14, f16, f18, f20 –> P3 
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2. Compute the gw-, tw- and opt-mappings of the UMTS task graph to the four SDR 
platforms of the umts scenario. Use the following simulation parameters: 

 w = 1, 2, 3, 4, 5 

 q = 0.5 

 (c-load, b-load) = (0.8, 1), (0.5, 2) 
Create two tables, one for each (c-load, b-load) tuple, containing the mapping 
costs. In the last column relate the mapping costs of the gw- and tw-mappings to 
the opt-mapping. Does the opt-mapping solution depend on the window size? 

3. Consider the following platform and application models: 

 C = (4, 4), 

 B = 












6.1

3.1
, 

 c = (2, 1.7, 0.75, 0.5) 

 b = 





















0000

0000

4.06.000

1075.00

 

 
The g2-mapping result is:  0 1 1 0 
The t2-mapping result is: 1 0 0 1 
 
Can you tell what the processing load is on processor basis—c_load(P1) and 
c_load(P2)—for these two mapping results? What is the processing load on 
platform basis (c_load)? Does it depend on the mapping? 

 
This finishes ALOE session 7. Please send your feedback to flexnets.pmt@upc.edu. 
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Appendix 
 
Figure 7 - Computing resource management files. 
 

/*******/ 

/* API */ 

/*******/ 

mapper.h 

 

 

 

/*******************************************/ 

/* COMPUTING RESOURCE MANAGEMENT FRAMEWORK */ 

/*******************************************/ 

mapper_functions.h /* contains the function prototypes */ 

 

mapper.c /* uses the API and calls the corresponding 

mapping functions */ 

 

sort_c.c   /* preprocessing: c-ordering */ 

 

sort_b.c   /* preprocessing: b-ordering */ 

 

tw_mapping.c  /* tw-mapping algorithm */ 

 

gw_mapping.c  /* gw-mapping algorithm */ 

 

opt_mapping.c /* opt-mapping algorithm: computes all N^M 

different mapping solutions and returns the 

mapping of minimum cost */ 

 

cost_compU.c  /* computation cost (cost function term) */ 

 

cost_commU.c  /* communication cost (cost function term) */ 

 

generar_k.c /* computes the k1 and k2 cost function 

parameters */ 

 

 

/**************/ 

/* TEST SUITE */ 

/**************/ 

api_test.h /* configures the test suite: defines the 

mapping scenario and algorithm options*/ 

 

api_test.c /* main function: mapping problem generation 

and mapping framework invocation. */ 

 

printinfo.c /* prints some basic information about the test 

suit at the beginning of each execution */ 

 

 

/********************************/ 

/* MAPPING PROBLEMS (SCENARIOS) */ 

/********************************/ 

gendag4.c /* application model with random precedence 

constraints and data flow requirements */ 

 



ALOE Session 7: Computing Resource Management June 2011 

17 

 

umts_models.c /* UMTS receiver chip- and bit-rate processing 

model and 4 platforms of 3 fully-interconnected 

processors */ 

 

umts2_models.c /* UMTS transmitter and receiver bit-rate 

processing models and 4 platforms of 3 fully-

interconnected processors */ 

 

IEEE_models.c /* 6 SDR platforms of 3 fully-interconnected 

processors (IEEE Trans. Comput., Oct 08) */ 

 

Frequenz_models.c /* 9 SDR platforms of 3 fully-interconnected 

processors (Frequenz, Sept/Oct 06) */ 

 

three_processor_models.c /* 2 SDR platforms of 3 fully-

interconnected processors, one platform is 

based on 3 half-duplex links and the other 

features one shared bus */ 

 

four_processor_models.c   /* 2 SDR platforms of 4 fully-

interconnected processors with different 

interprocessor communication networks: 6 half-

duplex links and one shared bus */ 

 

two_dim_models.c /* An array of Nx = N2 * N2 processors 

connected through a 2D communication network */ 

 

three_dim_models.c /* An array of Nx = N3 * N3 * N3 processors 

connected through a 3D communication network 

(Hypercube) */ 

 

custom_models.c /* custom platform and application models */ 

 

 

/**********************************/ 

/* RESOURCE MODELs TRANSFORMATION */ 

/**********************************/ 

resource_models_transformation.c  /* transforms communication model 

Bx[][] to the internally used interconnection 

or topology matrix I[][] and bandwidth resource 

vector B[] */ 

 

 

/***************************/ 

/* PRESENTATION OF RESULTS */ 

/***************************/ 

printout.c   /* prints the % of infeasible mappings */ 

 

print_mapping.c  /* prints the mapping solution and cost */ 

 

print_resources.c  /* prints the remaining computing resources */ 

 

print_edges.c  /* prints the mapping decisions (highlighted 

edges of the tw-mapping process */ 
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Figure 8 - UMTS scenario: UMTS task graph (a), application model (MOPTS and MBPTS) for a 
time slot duration of 0.588 · 10-3 s (b), and platform models (MOPS and Mbps) (c-f). 
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Figure 9 - custom-models.c 
 

// Resource Models 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

#include "api_test.h" 

 

extern float Px[Nx][R];   // processing powers of N 

processors per resource model 

extern float Bx[Nx][Nx][R-RB];  // Bandwidth matrices 

extern float B_bus; 

 

extern int arch_type[R];  // architecture 

 

extern float b_unsort[Mx][Mx];   

extern float m_unsort[Mx];   // unsorted (original) c-

vector 

 

extern float Ctotal[R]; 

extern float Btotal[R]; 

 

app_totals custom_models(float c_load, float b_load) 

{ 

 int i, j, r;   // loop indices 

 float c_total = 0;  // total processing demand 

 float b_total = 0;  // total processing demand 

 

 app_totals waveform_totals; // structure containing two 

parameters: c_total and b_total 

 

 

 /********** SDR application **********/ 

 /* processing requirements:*/ 

 m_unsort[0] = 2; 

 //m_unsort[1] = ... 

 

 for (i=0; i<Mx; i++) 

  c_total +=m_unsort[i]; 

 

 

 /* bandwidth requirements */ 

 /* the following 3 lines initialize the data flow matrix b with 

zeros (no data flow dependencies) */ 

 for (i=0; i<Mx; i++) 

  for (j=0; j<Mx; j++) 

   b_unsort[i][j] = 0; 

 

 /* add here the non-zero data flow requirements */ 

 b_unsort[0][1] = (float)0.75; 

 //b_unsort[0][3] = ... 

  

 for (i=0;i<Mx;i++) 

  for(j=0;j<Mx;j++) 

   b_total += b_unsort[i][j]; 

 

 

 /********* SDR platform ***********/ 
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 /* processing capacities */ 

 Px[0][0] = 4; 

 Px[1][0] = 3; 

 

 Ctotal[0] = 0; 

 for (i=0; i<Nx; i++) 

  Ctotal[0] += Px[i][0]; 

 

 /* bandwidth capacities */ 

 /* the following 3 lines define the processor-internal data flow 

capacities */ 

 for (r=0; r<R; r++) 

        for (i=0; i<Nx; i++) 

   Bx[i][i][r] = (float)pow(10,8); // 'infinite' intra-

processor bandwidths 

 

 arch_type[0] = fd; // fd/hd/bus: full-duplex/half-duplex/bus 

interprocessor communication topology; 

 

 // Full-duplex or half-duplex communication network 

 Bx[0][1][0] = (float)1.5; 

 Bx[1][0][0] = (float)1.5; 

 

 // shared bus architecture 

 B_bus = (float)1.5; 

 

 Btotal[0] = 0; 

 if (arch_type[0] == bus) 

  Btotal[0] = B_bus; 

 else 

 { 

  for (i=0; i<Nx; i++) 

  { 

   for (j=0; j<Nx; j++) 

   { 

    if (j!=i) 

     Btotal[0] += Bx[i][j][0]; 

   } 

  } 

  if (arch_type[0] == hd) 

   Btotal[0] = Btotal[0]/2; // bidirectional link 

is shared, rather than having two individual directional links (fd) 

 } 

 

 waveform_totals.c = c_total; 

 waveform_totals.b = b_total; 

 

 return waveform_totals; 

} 
 

 


