
ALOE Session 7: Computing Resource Management June 2011

1

ALOE Session 7: Computing Resource
Management Framework

Vuk Marojevic, Ismael Gomez, Antoni Gelonch
Universitat Politècnica de Catalunya

June 2011

1. Objective

This session presents ALOE’s computing resource management framework. You will
learn how to use the framework, change its parameters, and create custom waveform
and platform models.

2. Overview

- Introduction to computing resource management

- ALOE’s computing system modeling and management

- Download and use the computing resource management framework

- Create custom application and platform models

- Exercises

3. Requirements

- C compiler

- Basic C programming skills

4. Versions

We continuously evolve the ALOE framework and tools. Consult
http://flexnets.upc.edu/trac/wiki/ResourceManagement for the latest version of the

http://flexnets.upc.edu/trac/wiki/ResourceManagement

ALOE Session 7: Computing Resource Management June 2011

2

computing resource management framework. This session does not require the
download and installation of ALOE.

5. Procedure

5.1. Introduction

In the early 90s Mitola envisaged radio transmitters and receivers (transceivers) that
implement the entire signal processing chain in software. He coined this vision
software radio. Software radio describes multistandard, multiservice, and multiband
radio systems, which are software-reconfigurable. Software-defined radio (SDR) is a
generalization of Mitola’s software radio, as it describes transceivers that implement
part of their physical layer processing in software.

SDR introduces flexibility to wireless systems: It permits adjusting or switching a
terminal’s radio access technology (RAT) implementation for adapting to changes in
the heterogeneous radio environment. SDR platforms stand for software-
programmable computing equipment, including handset transceivers, base stations,
and core networks. SDR applications or waveforms refer to RAT-specific digital signal
processing chain. Reconfiguring an SDR platform to execute another SDR application
can then change radio communications link characteristics or even the entire radio
standard. Dynamic RAT switches or modifications during communications sessions are
also envisaged.

SDR presents a hard real-time computing challenge. The computing constraints
increase as wireless systems evolve. Therefore, the flexibility of SDR terminals and
network elements is a function of the computing resource managers, which need to
continuously track the states of the computing resources and assign them properly.

An SDR application is the part of an SDR transceiver that is implemented in software. It
consists of a set of concurrent processes that continuously process and propagate real-
time data. Such a processing chain is not specifically tailored but rather executable on
any general-purpose platform with sufficient computing capacity. Because of the
similarities between future SDR applications and platforms and today’s general-
purpose computing applications and platforms, we consider general-purpose
computing methods practical for SDR systems. We particularly think that the
introduction of appropriate mapping and scheduling techniques will leverage the
design of SDR platforms and applications. Mapping (matching in heterogeneous
computing literature) describes the process of assigning software modules to
hardware resources, whereas scheduling determines the execution times of these
modules. Mapping and scheduling are two complementary computing resource
management methods that facilitate a dynamic computing resource allocation under
the given constraints.

ALOE Session 7: Computing Resource Management June 2011

3

5.2. ALOE’s computing resource management framework

ALOE features a computing resource management (CRM) framework that permits a
flexible and dynamic management of different types of computing system constraints
and objectives. ALOE’s CRM framework consists of several modules (Fig. 1). The basis
for the resource management is ALOE’s time management (Section 5.2.1).

The computing system modeling (Section 5.2.2) creates suitable models of SDR
platforms and applications, capturing all relevant computing resources and
requirements.

The computing resource management (Section 5.2.3) is based on the use of a general-
purpose mapping algorithm and external cost functions. It manages (allocates, keeps
track of, and updates) the available computing resources as a function of the
computing requirements and management policy.

Cost
Function

Mapping
Algorithm

SDR
Platform
Modeling

SDR
Application
Modeling

Management
Policy

Management
Algorithm

Platform Models
(Computing resources)

Application Models
(Computing requirements)

Computing Resource Management

Computing System Modeling
Figure 1 - CRM organization.

5.2.1. Time management

Metrics
An SDR platform represents an SDR mobile terminal or an SDR network element. These
platforms comprise a few or many heterogeneous processing devices, such as FPGAs,
DSPs, and GPPs, which communicate with each other. An FPGA’s prime resource is the
logic area for parallel processing, which can be converted to multiply-accumulate
operations (MACs) per time unit when using well-defined benchmarks (filter, FFT, and
so forth). DSP, GPP, and MP-SoC performances are typically given in million
instructions per second (MIPS).

The processing powers and the inter-processor bandwidths are the primary resources
of SDR platforms. We consider million operations per second (MOPS) as the basic unit
for characterizing the processing powers and mega-bits per second (Mbps) for the

ALOE Session 7: Computing Resource Management June 2011

4

(inter-)processor communication capacities. We correspondingly apply the same
metrics for capturing SDR applications' processing and data flow requirements. The
implicit timing requirements need to be specified as a function of the radio link timing
requirements.

Time-Slot Division and Pipelining
We consider processing time as just another limited computing resource. MOPS and
Mbps embed this critical resource and thus permit an implicit time management. In
continuation we discuss two mechanisms that ease the computing resource
management.

Data that is transmitted or received over the wireless link needs to be processed for as
long as there is data to transmit or receive. An SDR application will execute during the
entire user session or until it is exchanged by another one. We thus propose breaking
up the continuous execution into periodic executions by dividing the computing
resource time in equidistant computing time slots and the SDR application in pipelining
stages. Figure 2 illustrates this.

P1

Internal
Link

External
Link

P2 O3

O1 O2O2O1

Data T O1 to O2

O1 O2

O3 O4

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O5

Objects mapped to
Processor 1 (P1)

Objects mapped to
Processor 2 (P2)

O1 O2 O4

O3

O5

(stage 1) (stage 2) (stage 3) (stage 4)

Figure 2 - Time slots and pipelining.

The pipelined execution of an SDR application establishes that, in any time slot, all SDR
functions process and propagate some part of the data. That is, the same processing
and data transfers repeat each time slot on a different data portion (Figure 2). We can
then derive the new units million operations per time slot (MOPTS) and mega-bits per
time slot (MBPTS) as t ∙ MOPS and t ∙ Mbps, where t is the time slot duration that is
specified as a function of the latency requirements and the number of pipelining
stages (see next subsection). MOPTS and MBPTS are the basic units for the SDR
computing system modeling (Section 5.2.2).

Scheduling: Meeting the Real-Time Computing Constraints
The computing resource management facilities and our computing system modeling
permit mapping an SDR application to an SDR platform on time slot basis, that is, the

ALOE Session 7: Computing Resource Management June 2011

5

assignment of computing requirements to computing resources within a single time
slot frame.

We assume that coprocessors facilitate the concurrent data processing and data
propagation on all processor’s in- and outputs. Since repetitive operations on data
samples and continuous outputs, often one per execution cycle, characterize digital
signal processing, we may further assume that the software and hardware facilitate
the immediate propagation of processed data samples. The SDR framework finally
needs to manage the synchronized execution on all processors and provide pipelining
and buffering mechanisms, among others, for the proper and timely data delivery.
ALOE provides these mechanisms.

On the basis of a feasible mapping—a mapping that reserves no more than 100 % of
any available computing resource—and under the above assumptions, the usually
complex scheduling process can then be simplified to N independent local scheduling
tasks. A processor’s local scheduler need to organize the execution sequence of the
corresponding SDR functions and their data transfers within the time-slot boundaries.
A feasible mapping and a suitable scheduling ensures that the input data of any SDR
application’s module or set of modules is processed according to its arrival rate and
without excessive data buffering, meeting the minimum bit rate requirement. The time
slot duration provides direct control over the pipelining latency [2]; scheduling is a
complementary tool for controlling the processing latency.

5.2.2. Computing system modeling

The SDR computing system modeling consists of the platform modeling and the
application modeling. The platform modeling characterizes SDR platforms and their
computing resources, whereas the application modeling abstracts SDR applications
and their computing requirements. We identify four relevant types of computing
resources: processing, bandwidth, memory and energy resources. The computing
requirements correspondingly include the processing, dataflow, memory and energy
demands. The following models address processing and interprocessor bandwidth
capacities and requirements. These models are the basis for the computing resource
management (Section 5.2.3).

Platform Modeling (Computing Resources)

The framework assumes an SDR platform model consisting of N interconnected
processors P1, P2, ..., PN. The device model

 C = (C1, C2, …, CN) [MOPTS] (1)

is an N-element vector that captures the distributed processing capacities. The
communication model,

 Bx =

NNNN

N

N

BBB

BBB

BBB

21

22221

11211

 =

21

221

112

NN

N

N

BB

BB

BB

 [MBPTS], (2)

ALOE Session 7: Computing Resource Management June 2011

6

is an N times N matix, specifying the inter- and intraprocessor bandwidth capacities.
Bxy indicates the available bandwidth for moving data from processor Px to processor
Py. We assume that interprocessor bandwidths can be modeled as if they were infinite.

Bx thus informs about the communication topology (interconnectivity network) and
the communication resources (bandwidths), assuming a network that consists of
unidirectional communication links between each pair of processors. Additional
information is needed for modeling shared links. We therefore suggest a more general
communication modeling that distinguishes between the communication topology (3)
and the communication resources (4).

 I =

NNNN

N

N

III

III

III

21

22221

11211

 (3)

represents the logical interconnection model, where Iuv 1, 2, …, N·N is a unique
numerical label of the logical link between Pu and Pv. A logical link corresponds to a
directed (unidirectional) communication line between a pair of processors. These
logical links map to physical link bandwidths

 B = (B1, B2, …, BN, BN+1, …, BN·N) = (∞,∞, …, ∞, BN+1, …, BN·N) [MBPTS]. (4)

Bu, where u = I32 for instance, is the maximum bandwidth that is available for the
directed data transfer from the local data memory of processor P3 to the local data
memory of processor P2. It would be zero if the physical link is unavailable or
nonexistent. The first N elements of B, B1 to BN, capture the processor-internal
communication resources of processor P1 to PN; hence, Iuu 1, 2, …, N. Since
processor-internal data movements are typically orders of magnitude faster than
processor-external data transfers, we can label logical links so that B1 ≥ B2 ≥ B3 ≥ … ≥
BN·N. Unused elements of B are filled with 0s [1].

The CRM framework accepts both models, but internally uses I and B, which can be
generated from Bx for certain interprocessor communication topologies: dedicated
links between processor pairs (full- or half-duplex) or a single shared bus per platform.

Application Modeling (Computing Requirements)

SDR applications or waveforms are digital signal processing chains that consists of the
M SDR functions f1, f2, ..., fM. Filters, equalizers, or decoders are example SDR
functions. Without loss of generally, we consider an SDR function as an indivisible
software process. That is, any SDR function will execute without preemption on a
single processor. The definition of processing blocks remains at the modeling level.
Two different models of the same waveform are then considered as two waveforms by
the computing resource manager.

The function model,

 c = (c1, c2, ..., cM) [MOPTS], (5)

ALOE Session 7: Computing Resource Management June 2011

7

provides their processing requirements, whereas the dataflow model,

 b =

MMMM

M

M

bbb

bbb

bbb

21

22221

11211

000

00

0

2

112

M

M

b

bb

[MBPTS], (6)

indicates the precedence constraints between SDR functions as well as the data flow
bandwidth requirements: bxy > 0 indicates a data dependency between fx and fy. More
precisely, process fx sends data to process fy and requires a bandwidth of b12 MBPTS
for this data transfer. Since modeling SDR applications as directed acyclic graphs
(DAGs), we can apply the logical numbering principle (if fx sends data to fy, then x<y)
and b becomes a strictly upper diagonal matrix [1].

5.2.3. Computing resource management

The computing resource management relies on the computing system modeling.
Figure 3 illustrates this relation. The framework features different mapping algorithms.
All algorithms are general-purpose as they allow applying different cost functions or
optimization criteria.

A mapping algorithm distributes the application modules among the limited and
distributed computing resources. Consider, for example, the application model of
Figure 8b in the appendix and the platform model of Figure 8c. The computing
resource management problem here consists of allocating processor resources and
communication facilities to the 24 applications modules and their data flows under the
given computing constraints (limited resources and hard real-time requirements).

The tw-mapping was introduced in [2] and is fully described in [1]. The following
subsection provides a summary. The gw-mapping is an extended or parameterized
greedy algorithm. The generally low computing complexity makes the gw-mapping
applicable for large-scale computing resource management problems. It also serves as
a baseline algorithm for evaluating the tw-mapping results [1].

The opt-mapping does an exhaustive search over the entire solution space for finding
the mapping of minimum cost for the given problem and cost function. The long
execution times for reasonable problem sizes limit the applicability of the opt-

informs about

the available

resources

updates the

remaining

resources

Computing

System

Modeling

Computing

Resource

Management

Figure 3 - Management interactions.

ALOE Session 7: Computing Resource Management June 2011

8

mapping. The problem size is defined by the number of processors (N) and processes
(M): There are NM different mappings of M processes to N processors. Table 1
indicates some mappings of 4 processes to 2 processors.

Table 1 - The different mappings solutions for N = 2 processors and M = 4 processes.

Mapping Digital representation

f1, f2, f3, f4 P1

0 0 0 0

f1, f2, f3 P1

f4 P2
0 0 0 1

f1, f2, f4 P1

f3 P2
0 0 1 0

f1, f2 P1

f3, f4 P2
0 0 1 1

f1, f3, f4 P1

f2 P2
0 1 0 0

f1, f3 P1

f2, f4 P2
0 1 0 1

f1 P1

f2, f3, f4 P2
0 1 1 1

f2, f3, f4 P1

f1 P2
1 0 0 0

f2, f3 P1

f1, f4 P2
1 0 0 1

… …

(P1)

(P2)

(P3)

f i–1 f i f i+1 f i+w–2 f i+w–1

…

P
1

P
2

P
N

…

window size w

···

(N
p
ro

c
e
s
s
o
rs

)

origin
reference

decision

step 1 step i–1 step i stepMstep i+1

(M SDR functions)

Figure 4 - tw-mapping diagram and examined paths at t-node {P1, fi}.

ALOE Session 7: Computing Resource Management June 2011

9

The tw-mapping

The tw-mapping is a general-purpose mapping algorithm. It is a windowed dynamic
programming algorithm, where w indicates the window size. The mapping process is
organized by the tw-mapping diagram, which contains a trellis of N times M (row times
column) t-nodes. A t-node is identified as {Pj, fi} and absorbs the mapping of SDR
function fi to processor Pj. Any t-node at step i (column i in the tw-mapping diagram)
connects to all t-nodes at step i+1. The sequence of processors [Pk(0) Pk(1) ... Pk(w)]i
identifies the w-path, a path of length w, that is associated with t-node {Pk(1), fi}, where
Pk(0) is the w-path’s origin processor at step i–1 and Pk(w) the destination processor at
step i+w–1.

The main feature of the tw-mapping is that it is cost function independent. That is, any
cost function can, in principle, be applied. The cost function guides the mapping
process. It is responsible for managing a platform’s available computing resources and
an application’s real-time processing requirements.

The algorithm sequentially pre-assigns, or pre-maps, processes to processors, starting
with SDR function f1 and finishing with SDR function fM (parts I and II of the algorithm).
This is followed by a post processing that determines the final mapping (part III).

tw-mapping, part I

Part I consists of pre-mapping SDR function f1 to all N processors and storing the pre-
mapping costs at t-nodes {P1, f1} through {PN, f1}. Costs are computed due to some cost
function, which is externally defined.

tw-mapping, part II

At step i of part II (2 ≤ i ≤ M–w+1) the tw-mapping examines all Nw w-paths that are
associated with {Pk(1), fi}. These w-paths originate at a t-node of step i–1, pass through
{Pk(1), fi}, and terminate at a t-node of step i+w–1. Figure 4 illustrates this for Pk(1) = P1.

In case that i < M–w+1, the algorithm highlights the edge between a t-node at step i–1
and t-node {Pk(1), fi)} that corresponds to the minimum-cost w-path. The minimum-cost
w-path is the path that is associated with the minimum accumulated cost due to the
corresponding pre-mappings of f1, f2, ..., and fi+w–1, where the w-path’s origin t-node
provides the pre-mapping information of f1 to fi–1. The algorithm then stores the cost
and the remaining resources up to t-node {Pk(1), fi} at {Pk(1), fi}. After processing all t-
nodes at step i, the algorithm considering those at step i+1.

If i = M–w+1, however, the complete w-path of minimum cost is highlighted. The total
cost and the remaining resources are then stored at {Pk(1), fM–w+1}. After finishing the
processing of all N t-nodes at step M–w+1, part III of the algorithm starts.

tw-mapping, part III

Part III tracks the tw-mapping diagram backward and forward along the highlighted
edges, starting at the minimum-cost t-node at step M–w+1. This process finds the
complete mapping solution for the given problem and cost function.

ALOE Session 7: Computing Resource Management June 2011

10

The Cost Function

The cost function is responsible for managing the available computing resources of
SDR platforms, trying to allocate the required resources to SDR applications. We
generally define it as the sum of weighted cost terms, where each cost term captures
the relation between the required and available resource of a specific type. Each of
these terms must not be greater than 1. Otherwise, more resources would be
allocated than available. Hence, the cost function computes the pre-mapping cost as a
function of the remaining and the required resources. This implies dynamic resource
updates (Figure 3).

For managing the processing and interprocessor bandwidth resources we define the
cost function as

 cost = q · cost_comp + (1–q) · cost_comm. (7)

This two-term cost function manages the available processing and bandwidth
resources, while trying to meet the corresponding computing resource requirements.
Weight q is defined in interval [0, 1]. It defines the relative importance of the
computation cost with respect to the communication cost.

Equation (7) represents the basic cost function. Additional weights are introduced in
[3] and are available within the CRM framework.

5.3. Download and use the CRM framework

Go to http://flexnets.upc.edu/trac/wiki/ResourceManagement and download the CRM
framework sources. Extract (unzip) the files, which are listed in Figure 7 in the
appendix. The framework is completely implemented in C. You can view and modify
these files using a text editor.

The api_test.h file defines several constants. You can choose among the umts, umts2,
IEEE, Frequenz, three_proc, four_proc, two_dim, three_dim, or custom scenario. We
briefly introduce these scenarios below.

5.3.1. CRM scenarios

The umts scenario corresponds to the first scenario presented in [2] or [1, Section 5.2].
It assumes part of an UMTS downlink receiver processing chain (chip- and bit-rate
processing blocks) to be mapped to four SDR platform models of 3 processors each.
The UMTS waveform and the four platforms are defined in umts_models.c.

The umts2 scenario defines the bit-rate signal processing chain of a single-user
WCDMA transmitter and receiver. The model is obtained from execution time
measurements of the corresponding implementation (see umts2_models.c).

The IEEE scenario reflects the second simulation scenario of [2] or [1, Section 5.3]. The
file IEEE_models.c specifies the four platform models of [2] and two additional models
based on a shared bus communication network. The application models—data flow
dependencies and processing and bandwidth requirements—are randomly generated

http://flexnets.upc.edu/trac/wiki/ResourceManagement

ALOE Session 7: Computing Resource Management June 2011

11

based on a set of parameters (see api_test.c and iapi_test.h). They correspond to
random directed acyclic graphs (DAGs).

Frequenz defines the simulation scenario of [4]. It creates 100,000 random DAGs,
representing the computing models of different SDR applications. These DAGs are
mapped to 9 SDR platform models defined in Frequenz_models.c.

The three_proc and four_proc constants define two platform models of 3 and 4
processors each (see three_processor_models.c and four_processor_models.c). The
application models correspond to random DAGs.

The scenarios two_dim and three_dim define regular two- and three-dimensional
arrays of processors, a mesh network (two_dim_models.c) and a hypercube
(three_dim_models.c). The application models are, again, randomly generated.

The custom scenario defines custom SDR platform and application models. A two-
processor platform model and a simple application model are defined in
custom_models.c. You will edit this file later on in this session.

5.3.2. The UMTS scenario

Choose the UMTS scenario by setting the umts constant in api_test.h. Figure 8
illustrates the platform and application models of this scenario. Make sure to select
only one scenario in api_test.h. Now compile and link the source codes. If you are
using Linux, open a terminal, switch to the folder where you extracted the files and
type

gcc -O3 -o mapping *.c

You can now execute the just compiled program with seven optional parameters:

./mapping [alg] [w] [q] [c_load] [b_load] [order] [k]

The first parameter (alg) specifies the algorithm: gw-mapping (0), tw-mapping (1), or
opt-mapping (2). The tw-mapping is chosen in api_test.h as the default algorithm. The
second parameter (w) defines the window size of the gw- or tw-mapping (Section
5.2.3). The default value is 1. The third parameter modifies the cost function
parameter q, which is initially set to 0.5. The fourth and fifth parameters specify the
desired c_load and b_load, which we discuss later. The order indicates the mapping
order. If 1 or 2 is passed as the input parameter, the waveform modeling matrices are
processed in such a way that application modules are mapped in the order of
decreasing processing (1) or bandwidth (2) requirements. The final parameter (k)
indicates if an automatic cost function parameter weighting is applied; see [3] for
details.

ALOE Session 7: Computing Resource Management June 2011

12

Execute mapping without any parameters. Figure 5 shows the output that you should
observe. The first lines provide some information about the test suite and the
employed mapping algorithm, window size, cost function parameter, and so forth. In
this case, we have executed the t1-mapping with q = 0.5. The mapping results are
shown for each of the four platforms. Since only one application model is mapped to 4
platform models 0.0000 % indicates a feasible mapping solution, whereas a 100.0000
% would mean an infeasible mapping.

Figure 5 - Output.

This test suite applies the tw-, gw-mapping or optimal mapping

algorithm on different mapping scenarios.

Scenario and mapping options can be modified in "api_text.h".

Execution parameters are the algorithm window size 'w' and the cost

function parameter 'q'.

w = 1, 2, 3, ..., min{Wmax, M-1} - default: w = 1. Wmax = 5 (mapper.h)

and the number of application modules M = 24 (api_test.h).

q = 0, ...,1 - default: q = 0.5.

weighting = 0 (no additional cost function weighting), 1 (static

weights), 2 (dynamic weights).

Additional parameters are the processing and bandwidth loads (c_load,

b_load), which are used for scaling the computing resources (0: no

scaling).

* t1-mapping q = 0.50 *

 * c-load = 0.00

 * b-load = 0.00

 * Mapping in original (logical) order of processing blocks (no_ord)

Platform 1: 0.0000 % infeasible mappings

Platform 2: 0.0000 % infeasible mappings

Platform 3: 0.0000 % infeasible mappings

Platform 4: 0.0000 % infeasible mappings

Total processing demand (in the mean): 23247.16 MOPS

Total bandwidth demand (in the mean): 7030.22 Mbps

No. of skipped graphs: 0

======================================

Now uncomment line 430 in api_test.c:

print_mapping(mapping, preproc.ord);

This function prints the processor allocation (mapping) and the cost of that solution.
Save, compile, and execute the program again. Observe the different solutions for the
same SDR application, but four different platforms.

ALOE Session 7: Computing Resource Management June 2011

13

Table 2 - Processing load parameters.

Parameter Description

cT Application’s total processing requirement: sum of the
M processing requirements of SDR functions f1 to fM

CT Platform’s total processing capacity: sum of the N
processing resources of processors P1 to PN

sfC Scaling factor: scales the platform’s processing
resources C1 to CN

The UMTS scenario is limited to a single application and four platform models. To
simulate different computing system constraints, we introduce the processing and
bandwidth loads—c_load and b_load—which relate the application’s total processing
and bandwidth requirements to the platform’s total processing and bandwidth
resources:

 c_load =
TC

T

Csf

c

 , (8)

 b_load =
TB

T

Bsf

b

 . (9)

The processing load parameters are defined in Table 2. The scaling factors sfC and sfB
scale the platform’s initial processing and bandwidth resources. They are computed
from (8) and (9) and the desired c_load and b_load. Try executing the same scenario
with different processing and bandwidth loads—(c_load, b_load) = (0.5, 2.25) or (0.95,
1.25), for example:

mapping 1 1 0.5 0.5 2.25

mapping 1 1 0.5 0.95 1.25

Try increasing the window size to w = 4, for example, and repeat the last case:

mapping 1 4 0.5 0.95 1.25

Observe that the mapping problem is now feasibly solved for platform 4. That is, the
proposed mapping solution meets the SDR application’s real-time computing
requirements with the available resources. You can observe the remaining resources
using the function print_resources(). Therefore, simply uncomment line 433 in
api_test.c:

print_resources(mapping);

ALOE Session 7: Computing Resource Management June 2011

14

Do not forget to create a new executable file as any change in the codes requires
recompilation and relinking to become effective.

5.4. Create custom computing system models

The custom_models.c file has been defined for exemplifying the introduction of new
SDR application and platform models. Open the file in a text editor. The platform
model corresponds to that of Figure 6a. The application model is only partially defined.
Edit the corresponding sections—highlighted in Figure 9 in the appendix—to define
the application model of Figure 6b. Note that in the C programming language, array
elements are indexed from 0. m_unsort[0] then corresponds to the processing
requirement of SDR function f1, m_unsort[1] to that of f2, and so forth.
b_unsort[0][3], for example, stands for the minimum bandwidth requirement for
the data flow from f1 to f4.

1

0.5

f1

f2 f3

f4

2

1.5 0.5

0.5

4 3

1.5

1.5

P1 P2

(a) (b)
Figure 6 - Custom computing system models.

Deselect the umts scenario and select the custom scenario. That is, open api_test.h
and set the umts constant to 0 and the custom constant to 1. Compile and execute the
program:

gcc -O3 -o mapping *.c

./mapping

Does the mapping correspond to that of Fig. 4.13 of [1, page 58]? (The mapping cost
should be q · 2.75 = 1.375 here.)

Choose another algorithm or window size and run the simulation again.

6. Exercises

1. How many different mapping solutions exist for an SDR application of 21
functions and an SDR platform of 2 processors? And for 21 processes and 4
processors? Assuming 3 processors and 21 processes, how does the framework
represent the following mapping:

 f1, f2, …, f8 –> P1

 f9, f11, f13, f15, f17, f19, f21 –> P2

 f10, f12, f14, f16, f18, f20 –> P3

ALOE Session 7: Computing Resource Management June 2011

15

2. Compute the gw-, tw- and opt-mappings of the UMTS task graph to the four SDR
platforms of the umts scenario. Use the following simulation parameters:

 w = 1, 2, 3, 4, 5

 q = 0.5

 (c-load, b-load) = (0.8, 1), (0.5, 2)
Create two tables, one for each (c-load, b-load) tuple, containing the mapping
costs. In the last column relate the mapping costs of the gw- and tw-mappings to
the opt-mapping. Does the opt-mapping solution depend on the window size?

3. Consider the following platform and application models:

 C = (4, 4),

 B =

6.1

3.1
,

 c = (2, 1.7, 0.75, 0.5)

 b =

0000

0000

4.06.000

1075.00

The g2-mapping result is: 0 1 1 0
The t2-mapping result is: 1 0 0 1

Can you tell what the processing load is on processor basis—c_load(P1) and
c_load(P2)—for these two mapping results? What is the processing load on
platform basis (c_load)? Does it depend on the mapping?

This finishes ALOE session 7. Please send your feedback to flexnets.pmt@upc.edu.

References

[1] V. Marojevic, "Computing Resource Management in Software-Defined and
Cognitive Radios", Ph.D thesis, Universitat Politècnica de Catalunya, 2009.
Available online: http://flexnets.upc.edu/trac/wiki/Publications

[2] V. Marojevic, X. Revés, A. Gelonch, “A computing resource management
framework for software-defined radios,” IEEE Trans. Comput., vol. 57, no. 10, pp.
1399-1412, Oct. 2008.

[3] Vuk Marojevic, Ismael Gomez, Antoni Gelonch, “The FlexCRM Project”, Universitat
Politècnica de Catalunya, July 2011. Available online:
http://flexnets.upc.edu/trac/wiki/ResourceManagement

[4] V. Marojevic, X. Revés, A. Gelonch, “Dynamic resource allocation in software
defined radio – the interrelation between platform architecture and application
mapping,” Proc. 4th Karlsruhe Workshop on Software Radios (WSR’06), Karlsruhe,
Germany, March 22/23, 2006, pp. 39–44.

mailto:flexnets.pmt@upc.edu
http://flexnets.upc.edu/trac/wiki/Publications
http://flexnets.upc.edu/trac/attachment/wiki/ResourceManagement/FlexCRM.pdf

ALOE Session 7: Computing Resource Management June 2011

16

Appendix

Figure 7 - Computing resource management files.

/*******/

/* API */

/*******/

mapper.h

/***/

/* COMPUTING RESOURCE MANAGEMENT FRAMEWORK */

/***/

mapper_functions.h /* contains the function prototypes */

mapper.c /* uses the API and calls the corresponding

mapping functions */

sort_c.c /* preprocessing: c-ordering */

sort_b.c /* preprocessing: b-ordering */

tw_mapping.c /* tw-mapping algorithm */

gw_mapping.c /* gw-mapping algorithm */

opt_mapping.c /* opt-mapping algorithm: computes all N^M

different mapping solutions and returns the

mapping of minimum cost */

cost_compU.c /* computation cost (cost function term) */

cost_commU.c /* communication cost (cost function term) */

generar_k.c /* computes the k1 and k2 cost function

parameters */

/**************/

/* TEST SUITE */

/**************/

api_test.h /* configures the test suite: defines the

mapping scenario and algorithm options*/

api_test.c /* main function: mapping problem generation

and mapping framework invocation. */

printinfo.c /* prints some basic information about the test

suit at the beginning of each execution */

/********************************/

/* MAPPING PROBLEMS (SCENARIOS) */

/********************************/

gendag4.c /* application model with random precedence

constraints and data flow requirements */

ALOE Session 7: Computing Resource Management June 2011

17

umts_models.c /* UMTS receiver chip- and bit-rate processing

model and 4 platforms of 3 fully-interconnected

processors */

umts2_models.c /* UMTS transmitter and receiver bit-rate

processing models and 4 platforms of 3 fully-

interconnected processors */

IEEE_models.c /* 6 SDR platforms of 3 fully-interconnected

processors (IEEE Trans. Comput., Oct 08) */

Frequenz_models.c /* 9 SDR platforms of 3 fully-interconnected

processors (Frequenz, Sept/Oct 06) */

three_processor_models.c /* 2 SDR platforms of 3 fully-

interconnected processors, one platform is

based on 3 half-duplex links and the other

features one shared bus */

four_processor_models.c /* 2 SDR platforms of 4 fully-

interconnected processors with different

interprocessor communication networks: 6 half-

duplex links and one shared bus */

two_dim_models.c /* An array of Nx = N2 * N2 processors

connected through a 2D communication network */

three_dim_models.c /* An array of Nx = N3 * N3 * N3 processors

connected through a 3D communication network

(Hypercube) */

custom_models.c /* custom platform and application models */

/**********************************/

/* RESOURCE MODELs TRANSFORMATION */

/**********************************/

resource_models_transformation.c /* transforms communication model

Bx[][] to the internally used interconnection

or topology matrix I[][] and bandwidth resource

vector B[] */

/***************************/

/* PRESENTATION OF RESULTS */

/***************************/

printout.c /* prints the % of infeasible mappings */

print_mapping.c /* prints the mapping solution and cost */

print_resources.c /* prints the remaining computing resources */

print_edges.c /* prints the mapping decisions (highlighted

edges of the tw-mapping process */

ALOE Session 7: Computing Resource Management June 2011

18

DDS

Sampling
Rate

Frequency
Adjust

Ray
Search

2450 MOPS492 MOPS

120 MOPS

130 MOPS

1 MOPS

Interpolator
Decimator

46 MOPS

492 MOPS 2450 MOPS

160 MOPS

4-Finger
RAKE MRC

Channel
Estimation

92 MOPS

DPCH

1 KHz

fS = 61.44 MHz

4
·4

0
0
0
 M

O
P

S

M
a
x
im

u
m

 S
e
a
rc

h

Sync1
Sync2

Sync1

Sync1
Sync4

Sync3

fS = 65 MHz

2nd

Deinter-
leaving

CRC

Physical
Channel

De-
Mapping

Physical
Channel
Deseg-

mentation

10 MOPS

Radio
Frame
Deseg-

mentation

62.9 MOPS

1st

Deinter-
leaving

116 MOPS

Rate
Match-

ing

141 MOPS

Turbo
De-

coding

342 MOPS

TrBk
Concat./
CodeBk
Deseg.

11.7 MOPS0.2 MOPS

0.384 MBPS 1.15 MBPS

1
0
 M

O
P

S
1
0
5
 M

O
P

S

4

Matched
Filter

3.84 MHz

1
5
.3

6
 M

O
P

S

4

Chip Sync

Sampling
Rate

Matched
Filter

fS = 15.36 MHz fS = 3.84 MHz 7.68 MBPS

289·10-3

76.5·10-3
578·10-3

578·10-3

72.3·10-3

0.677·10-30.226·10-3 0.677·10-30.677·10-3

27·10-3

0.588·10-3 54.1·10-3 5.88·10-3

5.88·10-337·10-368.2·10-382.9·10-3201·10-36.88·10-30.118·10-3

4.52·10-3

94.1·10-3

61.8·10-3

0.226·10-3

9.4·10-6

70.6·10-3

4.52·10-3

9.04·10-3

72.3·10-3

289·10-3

2350·10-3

2350·10-3

2350·10-3

2350·10-3

f9

f8

f7

f6

f3

f2

f1 f11 f13

f12 f14

f15

f16

f17f18f19f20f21f22f23f24

f10

f4

f5
9.4·10-6

36.1·10-3

144.6·10-3

1440·10-3

1440·10-3

(a)

(b)

P2

10000

P1

10000

P3

10000

1000

1000

(c) (e)

P2

10000

P1

15000

P3

5000

1000

1000

(f)

P2

10000

P1

15000

P3

5000

1500

1500

(d)

P2

10000

P1

10000

P3

10000

1500

1500

Figure 8 - UMTS scenario: UMTS task graph (a), application model (MOPTS and MBPTS) for a
time slot duration of 0.588 · 10-3 s (b), and platform models (MOPS and Mbps) (c-f).

ALOE Session 7: Computing Resource Management June 2011

19

Figure 9 - custom-models.c

// Resource Models

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "api_test.h"

extern float Px[Nx][R]; // processing powers of N

processors per resource model

extern float Bx[Nx][Nx][R-RB]; // Bandwidth matrices

extern float B_bus;

extern int arch_type[R]; // architecture

extern float b_unsort[Mx][Mx];

extern float m_unsort[Mx]; // unsorted (original) c-

vector

extern float Ctotal[R];

extern float Btotal[R];

app_totals custom_models(float c_load, float b_load)

{

 int i, j, r; // loop indices

 float c_total = 0; // total processing demand

 float b_total = 0; // total processing demand

 app_totals waveform_totals; // structure containing two

parameters: c_total and b_total

 /********** SDR application **********/

 /* processing requirements:*/

 m_unsort[0] = 2;

 //m_unsort[1] = ...

 for (i=0; i<Mx; i++)

 c_total +=m_unsort[i];

 /* bandwidth requirements */

 /* the following 3 lines initialize the data flow matrix b with

zeros (no data flow dependencies) */

 for (i=0; i<Mx; i++)

 for (j=0; j<Mx; j++)

 b_unsort[i][j] = 0;

 /* add here the non-zero data flow requirements */

 b_unsort[0][1] = (float)0.75;

 //b_unsort[0][3] = ...

 for (i=0;i<Mx;i++)

 for(j=0;j<Mx;j++)

 b_total += b_unsort[i][j];

 /********* SDR platform ***********/

ALOE Session 7: Computing Resource Management June 2011

20

 /* processing capacities */

 Px[0][0] = 4;

 Px[1][0] = 3;

 Ctotal[0] = 0;

 for (i=0; i<Nx; i++)

 Ctotal[0] += Px[i][0];

 /* bandwidth capacities */

 /* the following 3 lines define the processor-internal data flow

capacities */

 for (r=0; r<R; r++)

 for (i=0; i<Nx; i++)

 Bx[i][i][r] = (float)pow(10,8); // 'infinite' intra-

processor bandwidths

 arch_type[0] = fd; // fd/hd/bus: full-duplex/half-duplex/bus

interprocessor communication topology;

 // Full-duplex or half-duplex communication network

 Bx[0][1][0] = (float)1.5;

 Bx[1][0][0] = (float)1.5;

 // shared bus architecture

 B_bus = (float)1.5;

 Btotal[0] = 0;

 if (arch_type[0] == bus)

 Btotal[0] = B_bus;

 else

 {

 for (i=0; i<Nx; i++)

 {

 for (j=0; j<Nx; j++)

 {

 if (j!=i)

 Btotal[0] += Bx[i][j][0];

 }

 }

 if (arch_type[0] == hd)

 Btotal[0] = Btotal[0]/2; // bidirectional link

is shared, rather than having two individual directional links (fd)

 }

 waveform_totals.c = c_total;

 waveform_totals.b = b_total;

 return waveform_totals;

}

