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This document explains the ALOE computing resource management approach. It presents the 

motivation for computing resource management, the organization of the ALOE management 

framework, the time management mechanisms, the system modeling, and the computing 

resource management. We indicate our current computing resource management research and 

present a list of further readings. 

 

1  Motivation 

SDR presents a hard real-time computing challenge. Taking into account the evolution of 

wireless systems it is clearly stated that whereas spectrum efficiency increases lineally its 

requirements in computing resources increases exponentially. Therefore, the flexibility, based 

on the reconfiguration capacity of terminals and network equipment, is based on capability of 

their reconfiguration managers, which need to track the states of the computing resources. 

An SDR processing chain, SDR application or waveform, is the part of an SDR transceiver 

that is implemented in software. It can be understood as a set of concurrent processes that 

continuously process and propagate real-time data. Such a processing chain is not specifically 

tailored but rather executable on any general-purpose platform with sufficient computing 

capacity. Therefore, an automatic mapping process needs to dynamically assign software 

modules to hardware resources, while meeting all computing system constraints. Wireless and 

SDR systems reveal specific aspects, essentially regarding flexibility and efficiency, that should 

be jointly considered: 

  1. Time slot based division of the transmission medium (radio time slot); 

  2. Continuous data transmission and reception; 

  3. RAT-specific quality of service (QoS) targets; 

  4. Real-time computing requirements and limited computing resources; 

  5. Different constraints and computing loads for different RATs and radio conditions; 

  6. Dynamic reconfiguration of the protocol stack, either partial or total; 

  7. Heterogeneous multiprocessor execution platforms. 
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2  Organization 

Our computing resource management proposal consists of several modules. We distinguish 

between the computing system modeling and the computing management mechanisms. The basis 

for the resource management is the time management of Section 3. 

The computing system modeling (Section 4) creates suitable models of SDR platforms and 

SDR applications, capturing the available and required computing resources. 

 

 

Figure 1.  FlexCRM organization. 

 

The computing resource management (Section 5) is based on the use of general-purpose 

mapping algorithms and specific cost functions. It manages (allocates, keeps track of, and 

updates) the available computing resources as a function of the computing requirements and 

management policies. 

 

3  Time Management 

3.1 Metrics 

An SDR platform represents an SDR mobile terminal or an SDR network element. These 

platforms comprise a few or many heterogeneous processing devices, such as FPGAs, DSPs, 

and GPPs, which communicate with each other. An FPGA’s prime resource is the logic area for 

parallel processing, which can be converted to multiply-accumulate operations (MACs) per time 

unit when using well-defined benchmarks (filter, FFT, and so forth). DSP, GPP, and MP-SoC 

performances are typically given in million instructions per second (MIPS). 

The processing powers and the inter-processor bandwidths are the primary resources of 

SDR platforms. We consider million operations per second (MOPS) as the basic unit for 

characterizing the processing powers and mega-bits per second (Mbps) for the (inter-)processor 
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communication capacities. We correspondingly apply the same metrics for capturing SDR 

applications' processing and data flow requirements. The implicit timing requirements need to 

be specified as a function of the radio link timing requirements. 

 

3.2 Time-Slot Division and Pipelining 

We consider processing time as just another limited computing resource. MOPS and Mbps 

embed this critical resource and thus permit an implicit time management. In continuation we 

discuss two mechanisms that ease the computing resource management (Section 5). 

 

 

Figure 2.  Time slots and pipelining. 

 

Data that is transmitted or received over the wireless link needs to be processed for as long 

as there is data to transmit or receive. An SDR application will execute during the entire user 

session or until it is exchanged by another one. We thus propose breaking up the continuous 

execution into periodic executions by dividing the computing resource time in equidistant 

computing time slots and the SDR application in pipelining stages. The following figure 

illustrates this. 

The pipelined execution of an SDR application establishes that, in any time slot, all SDR 

functions process and propagate some part of the data. That is, the same processing and data 

transfers repeat each time slot on a different data portion (Figure 2). We can then derive the new 

units million operations per time slot (MOPTS) and mega-bits per time slot (MBPTS) as t ∙ 

MOPS and t ∙ Mbps, where t is the time slot duration that is specified as a function of the 

latency requirements and the number of pipelining stages (Section 3.3). MOPTS and MBPTS 

synchronize the available computing resources with the time slot management and are the basic 

units for the SDR (Section 4). 
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3.3 Scheduling: Meeting the Real-Time Computing Constraints 

The adopted computing resource management facilities and our computing system modeling 

permit mapping an SDR application to an SDR platform on time slot basis. 

We assume that coprocessors facilitate the concurrent data processing and data propagation 

on all processor’s in- and outputs. Since repetitive operations on data samples and continuous 

outputs, often one per execution cycle, characterize digital signal processing, we may further 

assume that the software and hardware facilitate the immediate propagation of processed data 

samples. The SDR framework finally needs to manage the synchronized execution on all 

processors and provide pipelining and buffering mechanisms, among others, for the proper and 

timely data delivery. ALOE provides these mechanisms. 

The usually complex scheduling process can, on the basis of a feasible mapping - a 

mapping that reserves no more than 100 % of any available computing resource - and under the 

above assumptions, be simplified to N independent local scheduling tasks. Particularly, a 

processor’s local scheduler is capable of organizing the execution sequence of the 

corresponding SDR functions’ portions and their data transfers within the given time-slot 

boundaries. This ensures that the input data of any SDR application’s module or set of modules 

is processed according to its arrival rate so that no data is accumulated anywhere in the 

processing chain, meeting the minimum bit rate requirement. 

The time slot duration t times the number of the application’s time slots n is the pipelining 

latency in case of a feasible schedule on each processor. We specify t as 

t = L / n [SPTS] 

to meet the application’s maximum allowable latency L, where SPTS stands for seconds per 

time slot. We assume that t is large enough for the (efficient) execution of any SDR function in 

the processing chain. 

 

4  Computing System Modeling 

The SDR computing system modeling consists of the platform modeling and the application 

modeling. The platform modeling characterizes SDR platforms and their computing resources, 

whereas the application modeling abstracts SDR applications and their computing requirements. 

We identify four relevant types of computing resources: processing, bandwidth, memory and 

energy resources. The computing requirements correspondingly include the processing, 

dataflow, memory and energy demands. The following resource models and requirements 

address processing capacities/requirements and interpreocessor bandwidth capacities/ 

requirements. These models are the basis for a correct computing resource management 

(Section 5). 

In order to simplify the real-time computing resource management, time is considered as 

just another computing resource, which is implicitly modeled and managed (see also Section 3). 
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4.1 Platform Modeling (Computing Resources) 

We model an SDR platfrom as N interconnected processors P1, P2, ..., PN. The device model C is 

an N-element vector that captures their processing capacities: 

 C = (C1, C2, …, CN) [MOPTS]. (1) 

The communication model, N times N matrix Bx, indicates the (inter)processor bandwidth 

capacities, where Bxy indicates the available bandwidth for moving data from processor Px to 

processor Py: 
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Bx informs about the communication topology (interconnectivity network) and the 

communication resources (bandwidths), assuming a network that consists of unidirectional 

communication links between each pair of processors. Additional information is needed for 

modeling shared links. We therefore suggest a more general communication modeling that 

distinguishes between the communication topology (3) and the communication resources (4). 
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represents the logical interconnection model, where Iuv   1, 2, …, N · N is a unique numerical 

label of the logical link between Pu and Pv. A logical link corresponds to a directed 

(unidirectional) communication line between a pair of processors. These logical links map to 

physical link bandwidths 

 B = (B1, B2, …, BN, BN+1, …, BN · N ) = (∞,∞, …, ∞, BN+1, …, BN · N ) [MBPTS]. (4) 

Bu, where u = I32 for instance, is the maximum bandwidth that is available for the directed data 

transfer from the local data memory of processor P3 to the local data memory of processor P2. It 

would be zero if the physical link is unavailable or nonexistent. The first N elements of B, B1 to 

BN, capture the processor-internal communication resources of processor P1 to PN; hence, Iuu   

1, 2, …, N. Since processor-internal data movements are typically orders of magnitude faster 

than processor-external data transfers, we can label logical links so that B1 ≥  B2 ≥  B3 ≥  … ≥  

BN·N. Unused elements in (4) are filled with 0s. 
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4.2 Application Modeling (Computing Requirements) 

We model an SDR application or waveform as a signal processing chain that consists of the M 

SDR functions f1, f2, ..., fM. 

The function model c, an M-ary vector, provides their processing requirements, whereas the 

dataflow model b, an M-times-M matrix, indicates the precedence constraints between SDR 

functions and provides the data flow (bandwidth) requirements: 

 c = (c1, c2, ..., cM) [MOPTS], (5)  
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The stage model s finally specifies the pipelining stages associated with SDR functions f1 

through fM [2]: 

 s = (s1, s2, ..., sM). (7)  

 

5  Computing Resource Management 

The computing resource management relies on our computing system modeling described in 

Section 4. The figure below shows the interactions. 

 

 

Figure 3.  Management interactions. 
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node at step i (column i in the tw-mapping diagram) connects to all t-nodes at step i+1. The 

sequence of processors [Pk(0) Pk(1) ... Pk(w)]i identifies the w-path, a path of length w, that is 

associated with t-node {Pk(1), fi}, where Pk(0) is the w-path’s origin processor at step i–1 and Pk(w) 

the destination processor at step i+w–1. 

The main feature of the tw-mapping is that it is cost function independent. That is, any cost 

function can, in principle, be applied. The cost function guides the mapping process. It is 

responsible for managing a platform’s available computing resources and an application’s real-

time processing requirements. 

 

The algorithm sequentially pre-assigns, or pre-maps, processes to processors, starting with 

SDR function f1 and finishing with SDR function fM (parts I and II of the algorithm). This is 

followed by a post processing that determines the final mapping (part III). 

 

tw-mapping, part I 

Part I consists of pre-mapping SDR function f1 to all N processors and storing the pre-mapping 

costs at t-nodes {P1, f1} through {PN, f1}. Costs are computed due to some cost function (Section 

5.2). 

 

tw-mapping, part II 

At step i of part II (2 ≤ i ≤ M–w+1) the tw-mapping examines all N
w
 w-paths that are associated 

with {Pk(1), fi}. These w-paths originate at a t-node at step i–1, pass through {Pk(1), fi}, and 

terminate at a t-node at step i+w–1. The following figure illustrates this for Pk(1) = P1. 

 

 

Figure 4.  tw-mapping diagram and examined paths at t-node {P1, fi}. 
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In case that i < M–w+1, the algorithm highlights the edge between a t-node at step i–1 and 

t-node {Pk(1), fi)} that corresponds to the minimum-cost w-path. The minimum-cost w-path is the 

path that is associated with the minimum accumulated cost due to the corresponding pre-

mappings of f1, f2, ..., and fi+w–1, where the w-path’s origin t-node provides the pre-mapping 

information of f1 to fi–1. The algorithm then stores the cost and the remaining resources up to t-

node {Pk(1), fi} at {Pk(1), fi}. It (simultaneously) processes all t-nodes at step i before considering 

those at step i+1. 

If i = M–w+1, however, the complete w-path of minimum cost is highlighted. The total cost 

and the remaining resources are then stored at {Pk(1), fM–w+1}. After having processed all N t-

nodes at step M–w+1, part III of the algorithm starts. 

 

tw-mapping, part III 

Part III tracks the tw-mapping diagram back- and forward along the highlighted edges, starting at 

the minimum-cost t-node at step M–w+1. This process finds the complete mapping solution for 

the given problem and cost function. 

 

5.2 Cost Function 

The cost function is responsible for managing the available computing resources of SDR 

platforms while allocating the required resources to SDR applications. We generally define it as 

the sum of weighted cost terms, where each cost term captures the relation between the required 

and available resource of a specific type. Each of these terms must be less than or equal to 1. 

Otherwise, we would reserve more resources than available. Hence, the cost function computes 

the cost of a pre-mapping as a function of the available and the required resources. This implies 

dynamic resource updates as indicated by Figure 3.  

For managing the processing and interprocessor bandwidth resources we define the cost 

function as 

 cost = q · cost_comp + (1–q) · cost_comm. (8) 

This two-term cost function manages the available processing and bandwidth resources, while 

trying to meet the corresponding computing resource requirements. Weight q is defined in 

interval [0, 1]. It defines the relative importance of the computation cost with to the 

communication cost. 

The static cost function weight q has been shown to be significant in different case studies [2]. 

Its optimum value depends on the mapping problem, that is, the platform architecture and 

computing resources as well as the SDR application characteristics. As a result, we introduce 

another set of weights, k1 and k2, which are automatically assigned as a function of the mapping 

problem. Equation (8) then becomes 

 cost = q · k1 · cost_comp + (1–q) · k2 · cost_comm. (9) 
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The two new weights can be statically or dynamically assigned. They represent the ratio 

between the total computing requirements and the total computing resources of each kind. In the 

case of a dynamic assignment, k1 and k2 are dynamically updated as a function of the computing 

requirements still to be mapped and the remaining computing resources. This update occurs at 

each mapping step i (Figure 4), for each individual t-node, whereas no updates are performed 

throughout the processing of the associated w-paths. 

 

6  Current Research 

We currently investigate how to minimize the pipelining latency at the mapping and scheduling 

stages. Therefore, we examine new cost functions and evaluate their performance in different 

computing resource management scenarios. We, furthermore, address the scalability of the tw-

mapping with the objective of applying it to large processor arrays and multiprocessor systems-

on-chip (MP-SoCs). We work on extensions of the tw-mapping algorithm itself, but, also, on pre 

and postprocessing add-ons. 

 

Further Readings 

The following documents contain further information about the ALOE computing resource 

management approach: 

[1] V. Marojevic, X. Revés, A. Gelonch, “A computing resource management framework for 

software-defined radios,” IEEE Trans. Comput., vol. 57, no. 10, pp. 1399-1412, Oct. 2008. 

Online available:  

http://www.tsc.upc.edu/grcm/images/stories/IEEE_Trans._Computers_marojevic_2008.pdf 

[2] V. Marojevic, “Computing resource management in software-defined and cognitive 

radios,” Ph.D. Dissertation, Universitat Politècica de Catalunya (UPC), Barcelona, July 

2009. Online available: http://flexnets.upc.edu/trac/wiki/Publications 

http://www.tsc.upc.edu/grcm/images/stories/IEEE_Trans._Computers_marojevic_2008.pdf
http://flexnets.upc.edu/trac/wiki/Publications

