
1

The FlexCRM Project

Vuk Marojevic, Ismael Gomez, Antoni Gelonch

Universitat Politècnica de Catalunya

July 2011

Contents

This document explains the ALOE computing resource management approach. It presents the

motivation for computing resource management, the organization of the ALOE management

framework, the time management mechanisms, the system modeling, and the computing

resource management. We indicate our current computing resource management research and

present a list of further readings.

1 Motivation

SDR presents a hard real-time computing challenge. Taking into account the evolution of

wireless systems it is clearly stated that whereas spectrum efficiency increases lineally its

requirements in computing resources increases exponentially. Therefore, the flexibility, based

on the reconfiguration capacity of terminals and network equipment, is based on capability of

their reconfiguration managers, which need to track the states of the computing resources.

An SDR processing chain, SDR application or waveform, is the part of an SDR transceiver

that is implemented in software. It can be understood as a set of concurrent processes that

continuously process and propagate real-time data. Such a processing chain is not specifically

tailored but rather executable on any general-purpose platform with sufficient computing

capacity. Therefore, an automatic mapping process needs to dynamically assign software

modules to hardware resources, while meeting all computing system constraints. Wireless and

SDR systems reveal specific aspects, essentially regarding flexibility and efficiency, that should

be jointly considered:

 1. Time slot based division of the transmission medium (radio time slot);

 2. Continuous data transmission and reception;

 3. RAT-specific quality of service (QoS) targets;

 4. Real-time computing requirements and limited computing resources;

 5. Different constraints and computing loads for different RATs and radio conditions;

 6. Dynamic reconfiguration of the protocol stack, either partial or total;

 7. Heterogeneous multiprocessor execution platforms.

2

2 Organization

Our computing resource management proposal consists of several modules. We distinguish

between the computing system modeling and the computing management mechanisms. The basis

for the resource management is the time management of Section 3.

The computing system modeling (Section 4) creates suitable models of SDR platforms and

SDR applications, capturing the available and required computing resources.

Figure 1. FlexCRM organization.

The computing resource management (Section 5) is based on the use of general-purpose

mapping algorithms and specific cost functions. It manages (allocates, keeps track of, and

updates) the available computing resources as a function of the computing requirements and

management policies.

3 Time Management

3.1 Metrics

An SDR platform represents an SDR mobile terminal or an SDR network element. These

platforms comprise a few or many heterogeneous processing devices, such as FPGAs, DSPs,

and GPPs, which communicate with each other. An FPGA’s prime resource is the logic area for

parallel processing, which can be converted to multiply-accumulate operations (MACs) per time

unit when using well-defined benchmarks (filter, FFT, and so forth). DSP, GPP, and MP-SoC

performances are typically given in million instructions per second (MIPS).

The processing powers and the inter-processor bandwidths are the primary resources of

SDR platforms. We consider million operations per second (MOPS) as the basic unit for

characterizing the processing powers and mega-bits per second (Mbps) for the (inter-)processor

Cost
Function

Mapping
Algorithm

SDR
Platform
Modeling

SDR
Application
Modeling

Management
Policy

Management
Algorithm

Platform Models
(Computing resources)

Application Models
(Computing requirements)

Computing Resource Management

Computing System Modeling

3

communication capacities. We correspondingly apply the same metrics for capturing SDR

applications' processing and data flow requirements. The implicit timing requirements need to

be specified as a function of the radio link timing requirements.

3.2 Time-Slot Division and Pipelining

We consider processing time as just another limited computing resource. MOPS and Mbps

embed this critical resource and thus permit an implicit time management. In continuation we

discuss two mechanisms that ease the computing resource management (Section 5).

Figure 2. Time slots and pipelining.

Data that is transmitted or received over the wireless link needs to be processed for as long

as there is data to transmit or receive. An SDR application will execute during the entire user

session or until it is exchanged by another one. We thus propose breaking up the continuous

execution into periodic executions by dividing the computing resource time in equidistant

computing time slots and the SDR application in pipelining stages. The following figure

illustrates this.

The pipelined execution of an SDR application establishes that, in any time slot, all SDR

functions process and propagate some part of the data. That is, the same processing and data

transfers repeat each time slot on a different data portion (Figure 2). We can then derive the new

units million operations per time slot (MOPTS) and mega-bits per time slot (MBPTS) as t ∙

MOPS and t ∙ Mbps, where t is the time slot duration that is specified as a function of the

latency requirements and the number of pipelining stages (Section 3.3). MOPTS and MBPTS

synchronize the available computing resources with the time slot management and are the basic

units for the SDR (Section 4).

P1

Internal
Link

External
Link

P2 O3

O1 O2O2O1

Data T O1 to O2

O1 O2

O3 O4

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O5

Objects mapped to
Processor 1 (P1)

Objects mapped to
Processor 2 (P2)

O1 O2 O4

O3

O5

(stage 1) (stage 2) (stage 3) (stage 4)

4

3.3 Scheduling: Meeting the Real-Time Computing Constraints

The adopted computing resource management facilities and our computing system modeling

permit mapping an SDR application to an SDR platform on time slot basis.

We assume that coprocessors facilitate the concurrent data processing and data propagation

on all processor’s in- and outputs. Since repetitive operations on data samples and continuous

outputs, often one per execution cycle, characterize digital signal processing, we may further

assume that the software and hardware facilitate the immediate propagation of processed data

samples. The SDR framework finally needs to manage the synchronized execution on all

processors and provide pipelining and buffering mechanisms, among others, for the proper and

timely data delivery. ALOE provides these mechanisms.

The usually complex scheduling process can, on the basis of a feasible mapping - a

mapping that reserves no more than 100 % of any available computing resource - and under the

above assumptions, be simplified to N independent local scheduling tasks. Particularly, a

processor’s local scheduler is capable of organizing the execution sequence of the

corresponding SDR functions’ portions and their data transfers within the given time-slot

boundaries. This ensures that the input data of any SDR application’s module or set of modules

is processed according to its arrival rate so that no data is accumulated anywhere in the

processing chain, meeting the minimum bit rate requirement.

The time slot duration t times the number of the application’s time slots n is the pipelining

latency in case of a feasible schedule on each processor. We specify t as

t = L / n [SPTS]

to meet the application’s maximum allowable latency L, where SPTS stands for seconds per

time slot. We assume that t is large enough for the (efficient) execution of any SDR function in

the processing chain.

4 Computing System Modeling

The SDR computing system modeling consists of the platform modeling and the application

modeling. The platform modeling characterizes SDR platforms and their computing resources,

whereas the application modeling abstracts SDR applications and their computing requirements.

We identify four relevant types of computing resources: processing, bandwidth, memory and

energy resources. The computing requirements correspondingly include the processing,

dataflow, memory and energy demands. The following resource models and requirements

address processing capacities/requirements and interpreocessor bandwidth capacities/

requirements. These models are the basis for a correct computing resource management

(Section 5).

In order to simplify the real-time computing resource management, time is considered as

just another computing resource, which is implicitly modeled and managed (see also Section 3).

5

4.1 Platform Modeling (Computing Resources)

We model an SDR platfrom as N interconnected processors P1, P2, ..., PN. The device model C is

an N-element vector that captures their processing capacities:

 C = (C1, C2, …, CN) [MOPTS]. (1)

The communication model, N times N matrix Bx, indicates the (inter)processor bandwidth

capacities, where Bxy indicates the available bandwidth for moving data from processor Px to

processor Py:

 Bx =





















NNNN

N

N

BBB

BBB

BBB









21

22221

11211

 =



































21

221

112

NN

N

N

BB

BB

BB

[MBPTS]. (2)

Bx informs about the communication topology (interconnectivity network) and the

communication resources (bandwidths), assuming a network that consists of unidirectional

communication links between each pair of processors. Additional information is needed for

modeling shared links. We therefore suggest a more general communication modeling that

distinguishes between the communication topology (3) and the communication resources (4).

 I =





















NNNN

N

N

III

III

III









21

22221

11211

 (3)

represents the logical interconnection model, where Iuv 1, 2, …, N · N is a unique numerical

label of the logical link between Pu and Pv. A logical link corresponds to a directed

(unidirectional) communication line between a pair of processors. These logical links map to

physical link bandwidths

 B = (B1, B2, …, BN, BN+1, …, BN · N) = (∞,∞, …, ∞, BN+1, …, BN · N) [MBPTS]. (4)

Bu, where u = I32 for instance, is the maximum bandwidth that is available for the directed data

transfer from the local data memory of processor P3 to the local data memory of processor P2. It

would be zero if the physical link is unavailable or nonexistent. The first N elements of B, B1 to

BN, capture the processor-internal communication resources of processor P1 to PN; hence, Iuu

1, 2, …, N. Since processor-internal data movements are typically orders of magnitude faster

than processor-external data transfers, we can label logical links so that B1 ≥ B2 ≥ B3 ≥ … ≥

BN·N. Unused elements in (4) are filled with 0s.

6

4.2 Application Modeling (Computing Requirements)

We model an SDR application or waveform as a signal processing chain that consists of the M

SDR functions f1, f2, ..., fM.

The function model c, an M-ary vector, provides their processing requirements, whereas the

dataflow model b, an M-times-M matrix, indicates the precedence constraints between SDR

functions and provides the data flow (bandwidth) requirements:

 c = (c1, c2, ..., cM) [MOPTS], (5)

 b =





















MMMM

M

M

bbb

bbb

bbb









21

22221

11211





















000

00

0

2

112









M

M

b

bb

[MBPTS]. (6)

The stage model s finally specifies the pipelining stages associated with SDR functions f1

through fM [2]:

 s = (s1, s2, ..., sM). (7)

5 Computing Resource Management

The computing resource management relies on our computing system modeling described in

Section 4. The figure below shows the interactions.

Figure 3. Management interactions.

5.1 The tw-mapping

The tw-mapping is a general-purpose mapping algorithm. It is a windowed dynamic

programming algorithm, where w indicates the window size. The mapping process is organized

by the tw-mapping diagram, which contains a trellis of N times M (row times column) t-nodes. A

t-node is identified as {Pj, fi} and absorbs the mapping of SDR function fi to processor Pj. Any t-

informs about

the available

resources

updates the

remaining

resources

Computing

System

Modeling

Computing

Resource

Management

7

node at step i (column i in the tw-mapping diagram) connects to all t-nodes at step i+1. The

sequence of processors [Pk(0) Pk(1) ... Pk(w)]i identifies the w-path, a path of length w, that is

associated with t-node {Pk(1), fi}, where Pk(0) is the w-path’s origin processor at step i–1 and Pk(w)

the destination processor at step i+w–1.

The main feature of the tw-mapping is that it is cost function independent. That is, any cost

function can, in principle, be applied. The cost function guides the mapping process. It is

responsible for managing a platform’s available computing resources and an application’s real-

time processing requirements.

The algorithm sequentially pre-assigns, or pre-maps, processes to processors, starting with

SDR function f1 and finishing with SDR function fM (parts I and II of the algorithm). This is

followed by a post processing that determines the final mapping (part III).

tw-mapping, part I

Part I consists of pre-mapping SDR function f1 to all N processors and storing the pre-mapping

costs at t-nodes {P1, f1} through {PN, f1}. Costs are computed due to some cost function (Section

5.2).

tw-mapping, part II

At step i of part II (2 ≤ i ≤ M–w+1) the tw-mapping examines all N
w
 w-paths that are associated

with {Pk(1), fi}. These w-paths originate at a t-node at step i–1, pass through {Pk(1), fi}, and

terminate at a t-node at step i+w–1. The following figure illustrates this for Pk(1) = P1.

Figure 4. tw-mapping diagram and examined paths at t-node {P1, fi}.

(P1)

(P2)

(P3)

f i–1 f i f i+1 f i+w–2 f i+w–1

…

P
1

P
2

P
N

…

window size w

···

(N
p
ro

c
e
s
s
o
rs

)

origin
reference

decision

step 1 step i–1 step i step Mstep i+1

(M SDR functions)

8

In case that i < M–w+1, the algorithm highlights the edge between a t-node at step i–1 and

t-node {Pk(1), fi)} that corresponds to the minimum-cost w-path. The minimum-cost w-path is the

path that is associated with the minimum accumulated cost due to the corresponding pre-

mappings of f1, f2, ..., and fi+w–1, where the w-path’s origin t-node provides the pre-mapping

information of f1 to fi–1. The algorithm then stores the cost and the remaining resources up to t-

node {Pk(1), fi} at {Pk(1), fi}. It (simultaneously) processes all t-nodes at step i before considering

those at step i+1.

If i = M–w+1, however, the complete w-path of minimum cost is highlighted. The total cost

and the remaining resources are then stored at {Pk(1), fM–w+1}. After having processed all N t-

nodes at step M–w+1, part III of the algorithm starts.

tw-mapping, part III

Part III tracks the tw-mapping diagram back- and forward along the highlighted edges, starting at

the minimum-cost t-node at step M–w+1. This process finds the complete mapping solution for

the given problem and cost function.

5.2 Cost Function

The cost function is responsible for managing the available computing resources of SDR

platforms while allocating the required resources to SDR applications. We generally define it as

the sum of weighted cost terms, where each cost term captures the relation between the required

and available resource of a specific type. Each of these terms must be less than or equal to 1.

Otherwise, we would reserve more resources than available. Hence, the cost function computes

the cost of a pre-mapping as a function of the available and the required resources. This implies

dynamic resource updates as indicated by Figure 3.

For managing the processing and interprocessor bandwidth resources we define the cost

function as

 cost = q · cost_comp + (1–q) · cost_comm. (8)

This two-term cost function manages the available processing and bandwidth resources, while

trying to meet the corresponding computing resource requirements. Weight q is defined in

interval [0, 1]. It defines the relative importance of the computation cost with to the

communication cost.

The static cost function weight q has been shown to be significant in different case studies [2].

Its optimum value depends on the mapping problem, that is, the platform architecture and

computing resources as well as the SDR application characteristics. As a result, we introduce

another set of weights, k1 and k2, which are automatically assigned as a function of the mapping

problem. Equation (8) then becomes

 cost = q · k1 · cost_comp + (1–q) · k2 · cost_comm. (9)

9

The two new weights can be statically or dynamically assigned. They represent the ratio

between the total computing requirements and the total computing resources of each kind. In the

case of a dynamic assignment, k1 and k2 are dynamically updated as a function of the computing

requirements still to be mapped and the remaining computing resources. This update occurs at

each mapping step i (Figure 4), for each individual t-node, whereas no updates are performed

throughout the processing of the associated w-paths.

6 Current Research

We currently investigate how to minimize the pipelining latency at the mapping and scheduling

stages. Therefore, we examine new cost functions and evaluate their performance in different

computing resource management scenarios. We, furthermore, address the scalability of the tw-

mapping with the objective of applying it to large processor arrays and multiprocessor systems-

on-chip (MP-SoCs). We work on extensions of the tw-mapping algorithm itself, but, also, on pre

and postprocessing add-ons.

Further Readings

The following documents contain further information about the ALOE computing resource

management approach:

[1] V. Marojevic, X. Revés, A. Gelonch, “A computing resource management framework for

software-defined radios,” IEEE Trans. Comput., vol. 57, no. 10, pp. 1399-1412, Oct. 2008.

Online available:

http://www.tsc.upc.edu/grcm/images/stories/IEEE_Trans._Computers_marojevic_2008.pdf

[2] V. Marojevic, “Computing resource management in software-defined and cognitive

radios,” Ph.D. Dissertation, Universitat Politècica de Catalunya (UPC), Barcelona, July

2009. Online available: http://flexnets.upc.edu/trac/wiki/Publications

http://www.tsc.upc.edu/grcm/images/stories/IEEE_Trans._Computers_marojevic_2008.pdf
http://flexnets.upc.edu/trac/wiki/Publications

