
ALOE Session 6: Creating Waveform Components from Simulink April 2011

1

ALOE Session 6: Creating Waveform
Components from Simulink

Ismael Gomez, Vuk Marojevic, Antoni Gelonch
Universitat Politècnica de Catalunya

April 2011

1. Objective

This session presents the ALOE Simulink Target for creating waveform components.
The focus is on the generation of the C code implementation for ALOE from a Simulink
model, rather than on the design and verification of Simulink models.

2. Overview

- System preparation

- Exporting components

- Compiling for ALOE

- Invoking the component

3. Requirements

- PC running Linux, kernel 2.6.21 or above

- ALOE version 1.3 downloaded and installed on your PC (see ALOE Session 1)

- Basic Linux user skills

- MATLAB and Simulink, Release 2008 or later

- A Simulink model of your waveform components

ALOE Session 6: Creating Waveform Components from Simulink April 2011

2

4. ALOE versions

We continuously evolve the ALOE framework and tools. This session is compatible with
ALOE version 1.3. Consult http://flexnets.upc.edu/trac/wiki/ALOEedu for updates.

5. Procedure

5.1. Preparing the system

Digital signal processing modules can be automatically generated with
MATLAB/Simulink. This high-level simulation tool allows testing the functionality of
your module and synthesizing C code compatible with ALOE. In addition, an ALOE
target for the Simulink Real-Time Workshop [The MathWorks, “Real-Time Workshop
7”, 9400v06 09/07, available at www.mathworks.com] is available and automatically
generates the interface to the ALOE SWAPI.

This document explains by means of a hands-on example how to create signal
processing modules from Simulink. The ALOE Real-Time Workshop target, which is
available with the ALOE package distribution, is used to generate C code for ALOE from
a Simulink model. The model can be created from a set of Simulink library components
or from user programmed Matlab functions (M-models).

MATLAB/Simulink and ALOE may run on two operating systems. You need to access
the MATLAB and ALOE paths (not necessarily concurrently) and move data from one
path to the other. This is explained in continuation.

5.1.1. Copying files to the MATLAB directory

The ALOE Simulink target features the following files:

 lnx_callback.m

 lnx_install_dir.m

 aloe_main.c

 lnx_unix.tmf

 make_lnx.m

 aloe.tlc

 rtwmakecfg.m

These files are included in under the $ALOE/matlab/ directory. ($ALOE/ indicates the
directory where you extracted and installed ALOE on your PC.)

Create the following directory:

%MATLAB%/rtw/c/aloe/

http://flexnets.upc.edu/trac/wiki/ALOEedu
http://www.mathworks.com/

ALOE Session 6: Creating Waveform Components from Simulink April 2011

3

%MATLAB% indicates the directory, where Matlab is installed on your PC. Now copy
the ALOE Simulink target files from $ALOE/matlab/ to %MATLAB%/rtw/c/aloe/.

Start Matlab and add %MATLAB%/rtw/c/aloe/to the Matlab path (File->Set path...).

5.1.2. Copying MATLAB directories

You also need to copy the Matlab libraries and headers to a Linux directory. Create the
directory

matlab-files/

under your home directory, for example, and copy the following directories and their
subdirectories from the MATLAB installation path to matlab-files/:

%MATLAB%/extern

%MATLAB%/rtw

%MATLAB%/simulink

%MATLAB%/toolbox

Note that the ALOE Simulink target directory rtw/c/aloe also needs to be copied.

The amount of files to copy may be large. Although it would suffice to copy only those
toolboxes that will be used, we recommend copying all.

5.2. Generating C code for ALOE

Start Matlab and select File->New->Model to open the Simulink environment (or open
an already created Simulink model). Add your Simulink blocks to create a model as
usual. (For more help on creating models please refer to the Simulink documentation).

Generating C code for ALOE from a Simulink model requires configuring several
options in the Simulink environment. You should first indicate the Simulink signals that
will be used as inputs and outputs. A Simulink signal will not be accessible from ALOE
unless you select the signal option Test point. Second, you need to explicitly specify
whether a external signal is an input or an output. Therefore, add the “in_” (for an
input signal) or “out_” (for an output signal) prefix to the signal name. The names that
ALOE will use to access these signals will later be specified in the Application
Description File as

 in_itfName_re and out_itfName_re for the real part and

 in_itfName_im and out_itfName_im for the imaginary part.

Finally, you need to select the method for accessing signal samples.

ALOE Session 6: Creating Waveform Components from Simulink April 2011

4

Figure 1 - Signal configuration.

The above options can be configured in the Signal Properties window. Right-click on
the signal and select Signal Properties. Activate the Test point option and specify the
Signal name out_myoutput1, for example (Figure 1).

Under the Real-Time Workshop tab select the storage class “ExportedGlobal” (Figure
2). This defines how the output signals out_myoutput1 is accessed from ALOE, by
means of a global variable.

Figure 2 - Signal storage class.

http://flexnets.upc.edu/trac/wiki/ExportedGlobal

ALOE Session 6: Creating Waveform Components from Simulink April 2011

5

Figure 3 - Real-Time Workshop options.

The following steps configure the Simulink model to generate an implementation for
ALOE. In the Simulink model window, choose Tools->Real Time Workshop->Options...
form the main toolbar (Figure 3).

In the Configuration Parameters window (Real-Time Workshop tag) browse for the
System target file aloe.tlc (Figure 4).

Select the Interface tag in under the Real-Time Workshop menu in the left subwindow
and choose the C API Interface (Figure 5).

Make sure that target files are correctly specified for the Linux environment. Therefore,
configure the ALOE Target code generation options as shown in Figure 6.

You finally need to select the model for converting continuous signals to a discrete
representation. Therefore, select the Solver tag and choose Fixed-step Type and
Discrete (no continuous states) Solver (Figure 7). Set the simulation time to infinite: inf
as the Stop time option. Make sure that all other parameters are set according to
Figure 7.

You can now generate the C code implementation for ALOE. Click on Tools->Real Time
Workshop->Build Model and the code will be generated. (See the Matlab’s main
output screen in case of errors.)

ALOE Session 6: Creating Waveform Components from Simulink April 2011

6

Figure 4 - System target file selection.

Figure 5 - System target signal interface configuration.

ALOE Session 6: Creating Waveform Components from Simulink April 2011

7

Figure 6 - Matlab paths configuration.

Figure 7 - Solver configuration.

ALOE Session 6: Creating Waveform Components from Simulink April 2011

8

5.3. Compiling for ALOE

The files generated by the Simulink model generator are available under
%MATALB%/modelname_aloe_rtw/. Copy these files to a Linux directory: Create a new
directory, $ALOE/modules/matlab_modelname/, for example, and copy the files from
%MATALB%/modelname_aloe_rtw/.

Switch to the Linux directory that now contains the Simulink output files
($ALOE/modules/matlab_modelname/) and compile the component:

make -f modelname.mk

This will create the executable file modelname.

5.4. Deploying the new components

Now copy the executables of all waveform components (generated from Simulink) to
the ALOE SWMAN executable repository. This repository is located at $ALOE/example-
repository/swman_execs/linux/. It is necessary to place the executables there for the
ALOE framework being able to access them. Note that this directory typically links to
/usr/local/bin, which requires root privileges.

You can now create the Application Description File for specifying the components’
interconnections. Pay attention to the interface name convention for input and output
interfaces and real and imaginary parts. Figure 8 shows a draft of the Application
Description File for the ALOE component crand_d_source connecting to prova1. If you
are not familiar with Application Description Files, see ALOE Session 2 for more details.

Figure 8 - Application Description File draft.

object {

 obj_name=crand_d_source

 exe_name=crand_d_source

 proc=1000

 outputs {

 name=out_1_re

 remote_itf=in_1_re

 remote_obj=prova1

 bw=1000

 }

 outputs {

 name=out_1_im

 remote_itf=in_1_im

 remote_obj=prova1

 bw=1000

 }

}

This finishes ALOE session 6. Please send your feedback to flexnets.pmt@upc.edu.

mailto:flexnets.pmt@upc.edu

