
ALOE Session 5: Multiprocessing April 2011

1

ALOE Session 5: Multiprocessing

Ismael Gomez, Vuk Marojevic, Antoni Gelonch
Universitat Politècnica de Catalunya

April 2011

1. Objective

The objective of this session is learning how to use ALOE on multiprocessor platforms.
You will learn how to set up a multiprocessor environment for loading and running
waveforms.

2. Overview

- Introduction to multiprocessing

- ALOE on multicore processors

- ALOE on multiprocessor platforms

3. Requirements

- Multicore processor (1st part), 2 PCs (2nd part)

- Linux, kernel 2.6.21 or above

- ALOE version 1.3 downloaded and installed on both PCs (see ALOE Session 1)

- Basic Linux user skills

4. ALOE versions

We continuously evolve the ALOE framework and tools. This session is compatible with
ALOE version 1.3. Consult http://flexnets.upc.edu/trac/wiki/ALOEedu for updates.

http://flexnets.upc.edu/trac/wiki/ALOEedu

ALOE Session 5: Multiprocessing April 2011

2

5. Procedure

5.1. Introduction to multiprocessing

Signal processing tasks for wireless communications systems are algorithmically
complex, in general. These tasks often need to be executed on power-constrained
computing platforms. Hence, computing efficiency is an important topic for the
telecommunications system designer and operator.

The signal processing becomes more complex with the introduction of new wireless
communications standards. Higher transmission bandwidths and sampling rates also
have implications on the computing complexity. Fortunately, signal processing
algorithms are parallelizable. These algorithms consist of a set of mathematical
operations that are applied on a continuous data flow. Hence, multiple processors can
perform operations in parallel, increasing the processing throughput, or decreasing the
processor frequency and power consumption, at the cost of a higher processing
latency. This technique, called pipelining, is common in digital system design. Figure 1
illustrates the concept.

A pipelined execution eliminates the data flow dependencies between tasks. This
enables executing tasks concurrently. Tasks A, B1, and B2 of Figure 1, for example, can
then run on three processors. A and B1 or B2, however, process different data chunks
in a given time slot. The example of Figure 1 assumes 4 available processors so that
tasks C and D are executed sequentially. Pipelining increases the task execution
periodicity and, thus, the data throughput.

In case of an SDR receiver, the data processing needs to be synchronized with the
analog-to-digital converter (A/D) that continuously feeds the digital signal processing
chain with new data samples. The transmitter works analogous, but synchronizes the
task execution periods with the digital-to-analog converter (D/A). This kind of
synchronization is necessary on all processors. Otherwise, data samples may be lost or
excessive buffering required.

Tp

A

B2

Ts 2Ts 3Ts

C D

Tc

A A

Tr

A
re

a

B1

B2

B1

Time

A

B2

Ts 2Ts 3Ts

C D

Tc

A A

Tr

A
re

a

B1

B2

B1

Time

A
/D

Fsamp

R
a
te

 C
o
n
v
.

Fsamp’

A reads

TsFsamp’

samples

Clocks are synchronized periodically in frequency, not phase.

This enables having multiple A/D from multiple antenna with different phases.

A C D

B1

B2

A C D

B1

B2

Figure 1 - Pipelined execution pattern.

ALOE Session 5: Multiprocessing April 2011

3

The abstraction layer and operating environment (ALOE) is a middleware for SDR
applications, or waveforms. ALOE enables platform-independent design, where the
waveform description is isolated from the platform architecture. It supports
multiprocessing platforms and features an automatic computing resource manager
that maps application modules (implementing basic or advanced digital signal
processing tasks) to distributed computing resources. The time management ensures a
correct scheduling and synchronization of data flows, supporting a pipelined
execution.

5.2. Configuring ALOE for a multicore processor

We first examine symmetric multiprocessing (SMP) multicore processors. A multicore
processor is a single chip featuring multiple processing cores. The individual cores
share several peripherals—memories, accelerators, interfaces, cache, and so on—
enabling the communication of threads running on different cores. Multicore
processors are symmetric in the sense that the time needed to perform a task is
exactly the same on each core, simplifying the task scheduling process. This section
describes how to configure ALOE to run on a multicore processor.

We assume that ALOE has already been installed on your multicore processor.
Otherwise, perform the installation steps described in ALOE Session 1.

A single parameter controls the number of cores that ALOE will consider. Edit the
/usr/local/etc/platform.conf file with root permissions and set the variable nof_cores
to the number of cores on your platform. Choose 2 if you are using a Dual Core PC.

Now you can start ALOE and load, initialize, and run waveforms as usual (see ALOE
Session 1). If you choose loading the example waveform, you will notice that it maps
to a single core. This is so because of its low processing load and simple data flow
dependencies. If you try loading the utran waveform, on the other hand, you should
observe how the modules are distributed between the two cores. This waveform
requires a significant amount of processing resources and features modules with no
data flow dependencies.

5.3. Configuring ALOE for a multiprocessor platform

The second scenario assumes individual processors, which do not share memory or
any other peripheral, but, rather, communicate through an external data interface,
such as an Ethernet link.

ALOE currently supports TCP and UDP over Ethernet. Both protocols lack quality of
service (QoS) mechanisms. Interprocessor data flows may, therefore, lead to real-time
processing violations. Make sure that the network load is low for minimizing this
effect.

You will configure a simple network of two processors, PC1 and PC2. PC1 will execute
the ALOE Manager Daemons as well as some waveform modules, whereas PC2 will
execute the remaining waveform modules. The network consists on only one

ALOE Session 5: Multiprocessing April 2011

4

unidirectional interface, which connects PC2 to PC1. Another interface is used for
synchronization purposes. PC1 will provide the time reference.

ALOE needs to be installed on both PCs, connected through an Ethernet interface.
Make sure that you have TCP/IP connectivity between the two processors. You can use
ping for this purpose,

ping 192.168.2.2

replacing 192.168.2.2 with your processor’s IP address.

You can now configure the external interfaces of PC1. Therefore, edit
/usr/local/etc/xitf.conf as root on PC1 to match Figure 2.

Figure 2 - xitf.conf file of PC1.

slave control itf

[xitf]

 id=0x10

 address=0.0.0.0

 port=7000

 mode=inout

input data itf

[xitf]

 id=0x80

 address=0.0.0.0

 port=9000

 mode=in

sync master input itf

[xitf]

 id=0x3

 address=0.0.0.0

 port=8000

 mode=inout

The data interface is an input interfaces; the IP address 0.0.0.0 or any local address can
be specified. The mode inout (input/output) indicates a bidirectional interface that will
be used for control and synchronization purposes. The local processor creates and
initiates the socket. Again, you can use 0.0.0.0 or any other local address. The outin
(output/input) interface is also bidirectional, but the local processor connects to a
remote socket instead of initiating it.

The interface IDs indicate:

 0x2: synchronization slave (sync) interface (outin mode only),

 0x3: synchronization master (sync_master) interface (inout mode only),

 0x1: master control interface,

ALOE Session 5: Multiprocessing April 2011

5

 0x1n, n=[0..F]: slave control interface,

 0xpq, p=[2..F],q=[0..F]: data interfaces.

Now edit the /usr/local/etc/xitf.conf file of PC2. Configure it to connect to the IP
address and ports of PC1 (Figure 3).

Figure 3 - xitf.conf file of PC2.

master control itf

[xitf]

 id=0x1

 address=192.168.2.1

 port=7000

 mode=outin

output data itf

[xitf]

 id=0x80

 address=192.168.2.1

 port=9000

 mode=out

sync slave output itf

[xitf]

 id=0x2

 address=192.168.2.1

 port=8000

 mode=outin

Note that you need to substitute IP address 192.168.2.1 with the IP address of PC1. To
obtain this address you can use the ifconfig command with your physical interface
as an argument, for example:

ifconfig eth0

We will configure the set of daemons that will execute on the two processors next.
Open the /usr/local/etc/platform.conf file with root permissions on PC1 and edit the
daemons variable to feature the following 10 daemons:

daemons=cmdman,swman,hwman,statsman,frontend,exec,swload,stats,bridge,

sync_master

This will launch five manager daemons cmdman, swman, hwman, statsman, and
sync_master and five sensor/actuator daemons frontend, exec, swload, stats, and
bridge on PC1.

On PC2 we will launch the mandatory daemons only. Therefore, open
/usr/local/etc/platform.conf on PC2 and change the daemons line to

ALOE Session 5: Multiprocessing April 2011

6

daemons=frontend,exec,swload,stats,bridge,sync

Note that the sync_master daemon will be launched on PC1, whereas sync will run on
PC2. This means that PC1 provides the time reference for PC2.

ALOE currently supports only one slave for each synchronization master. Therefore, in
a network of three or more processors, the sync_master and sync daemons need to be
placed in a cascade. For a network of three processors, for example, P1 may execute
the sync_master for P2, P2 the corresponding sync (slave) and sync_master for P3,
which runs the sync (slave).

Since we are using Linux sockets, it is important to take care of the order in which
ALOE is initiated and stopped on the different processors. We recommend launching
ALOE on PC1 first, because PC1 creates a socket that will be used by PC2. When
finishing, terminate the ALOE processes in the reverse order. This way sockets are
cleanly initiated and terminated without the need for wait states.

After launching ALOE on both processors, you should observe the messages of Figure 4
appearing on the shell of PC1.

Figure 4 - Messages on PC1 after launching ALOE on both processors.

…

HWMAN: Add processor: New CPU: PE 0x2, 2000000 MACS 1 cores TS=10000

us

…

HWMAN: Add processor: New CPU: PE 0x4, 2000000 MACS 1 cores TS=10000

us

These massages indicate that the hardware manager (hwman or HWMAN) has
detected both processors (PC1, or PE 0x2, and PC2, or PE 0x4). You will also see the
processing capacity vector and the interprocessor bandwidth matrix.

Now you are ready to load a waveform. Notice that the command shell is accessible
only at PC1, which runs the command manager (cmdman) daemon as specified in
/usr/local/etc/platform.conf.

Try loading and executing the utran waveform on your own (see ALOE Session 1, if
necessary). Use the execinfo tool to check the distribution of waveform components
between the processors or the aloeUI tools (ALOE Session 4) for visualizing the
mapping and scheduling results.

This finishes ALOE Session 5. Please send us your feedback to flexnets.pmt@upc.edu.

mailto:flexnets.pmt@upc.edu

