
ALOE Session 1: Introduction to ALOE  April 2011 

 

1 

 

 

ALOE Session 1: Introduction to ALOE 
 
Ismael Gomez, Vuk Marojevic, Antoni Gelonch 
Universitat Politècnica de Catalunya 
 
April 2011 
 
 

1. Objective 

This session introduces ALOE and guides the installation of the framework on a PC 
running Linux. It provides a summary of the ALOE concept and principal functionalities 
as the basis for the following sessions. 
 

2. Overview 

- ALOE concept and system approach 
 

- ALOE utilities 
 

- Download and install ALOE for Linux 
 

- Execute an example waveform 
 

- Experience some ALOE functionalities 
 

3. Requirements 

- PC running Linux, kernel 2.6.21 or above 
 

- Basic Linux user skills 
 

4. ALOE versions 

We continuously evolve the ALOE framework and tools. The different ALOE versions 
are available at http://flexnets.upc.edu/downloads/source/. This session is compatible 
with ALOE version 1.3. Consult http://flexnets.upc.edu/trac/wiki/ALOEedu for updates. 

http://flexnets.upc.edu/downloads/source/
http://flexnets.upc.edu/trac/wiki/ALOEedu


ALOE Session 1: Introduction to ALOE  April 2011 

 

2 

 

5. Introduction to ALOE 

5.1. The ALOE concept 

The software-defined radio (SDR) concept envisages dynamic waveform 
reconfigurations. This, however, needs software and hardware support and computing 
resource management, in particular. The FlexNets initiative publishes research results 
on this topic and provides the abstraction layer and operating environment (ALOE), an 
open-source SDR framework with cognitive computing resource management 
capabilities. ALOE supports partial or total reconfigurations of the transceiver digital 
signal processing chain (waveform) while facilitating the deployment of waveforms on 
heterogeneous and distributed hardware resources. The main attributes and 
functionalities of ALOE are: 

 Flexibility – be able to trade implementation efficiency against flexibility. An 
efficient implementation makes best use of the available computing resources 
(low resource overhead), whereas a flexible solution allows for dynamic 
reconfigurations at the cost of some resource overhead. 

 Execution control – coordinate execution across the entire distributed 
computing system. 

 Abstractions – hide platform details and heterogeneity from radio applications, 
enabling portability. 

 Data packet oriented messaging – packet-oriented instead of processor or 
device-specific communication mechanisms. 

 Parameter control – runtime signal (parameter or variable) management. 

 Resource monitoring – computing system/environment awareness. 

 Computing resource management – efficiently manage the distributed and 
limited computing resources. 

5.2. ALOE layers 

While defining a common framework for developing and deploying SDR applications it 
is important to eliminate any platform (hardware and supporting software) 
dependency. Radio applications are built through a set of precedence-constrained 
modules. (These modules may also be called “objects”.) Each module represents a 
more or less complex signal processing block that acquires information from the 
preceding modules in the processing chain and delivers the processed information to 
the following modules. ALOE assumes that module interfaces are unknown at design 
time. This enables dynamically composing and recomposing processing chains at 
execution time while integrating the modules that assemble the desired waveform. 
 
Figure 1 illustrates the ALOE layers. The hardware layer typically consists of several 
processors or processing elements (PEs), which are physically interconnected. The 
ALOE Layer abstracts the hardware platform, providing a homogeneous execution 
environment, the ALOE platform, to applications. The abstract application layer models 



ALOE Session 1: Introduction to ALOE  April 2011 

 

3 

 

a radio application or waveform by means of the task graph. It abstracts the waveform, 
providing information about the involved tasks (modules or objects), their precedence 
constraints and data flow requirements. The real application layer uses the services or 
functionalities provided by the ALOE layer for assembling the complete waveform and 
distributing its modules among the available computing resources. 

5.3. ALOE architecture 

The following figure shows the relation between the different ALOE components and 
libraries. The application software (here represented by a single module) uses the 
ALOE services to interact with its environment. These services are accessible as 
function calls; the ALOE software library contains their implementation. The basic 
operations provided by the software library may require profound platform or 
hardware management. The ALOE hardware library makes these issues transparent to 
the software library. It takes advantage of the available hardware services and 
operating system tools, if present. 
 
The ALOE software components (ALOE Software Daemons) are accessed though the 
ALOE software library and perform several tasks for successfully running a waveform 
on distributed computing resources. The implementation of these components is 
platform independent and, hence, directly portable to other platforms (if the hardware 
library is available on these). A short description of the software daemons and their 
functionalities follows, where MAN is an acronym for manager. 

 CMD MAN: Provides a central access to ALOE for higher level control 
applications, such as GUIs and software development tools. 

 HW MAN: Automates the computing resource management for a dynamic 
allocation and reallocation of computing resources. 

 
Figure 1 - ALOE layers. 

 



ALOE Session 1: Introduction to ALOE  April 2011 

 

4 

 

 SW MAN: Administrates the waveform and module repositories. 

 STATS MAN: Provides initialization parameters and monitors the evolution of 
variables. 

 BRIDGE: Acts as a link for data transfers between connected PEs. 

 SYNC MAST: Provides the time reference for all PEs. 

 FRONT-END: Routes the ALOE control packets among the daemons and gathers 
the hardware status information. 

 SW LOAD: Assigns interfaces and other local resources to modules and their 

data flows. 

 EXEC CTRL: Ensures that every software module is correctly running under the 
given quality of service (QoS) constraints (real-time computing resource 
requirements). 

 STATS: Captures and modifies module variables and parameters. 

 SYNC: Synchronizes the local time with the remote time reference. 

5.4. Computing Resource Management 

SDR presents a hard real-time computing challenge with varying (computing) system 
conditions. The computing resource management framework thus needs to track the 
states of the computing resources for being able to take advantage of the 
reconfiguration capabilities of mobile terminals and network elements. 

 
Figure 2 - ALOE architecture. 

 



ALOE Session 1: Introduction to ALOE  April 2011 

 

5 

 

Cost

Function
Algorithm

SDR

Platform
Modeling

SDR

Application
Modeling

Computing Resource

Management Policy

General-Purpose

Mapping Algorithm

Computing

Resources’ Models
Computing

Requirements’ Models

Computing Resource Management

Computing Resource Modeling
 

Figure 3 - Computing resource management framework. 

 
Our computing resource management framework is modular. It features the 
computing system modeling on the one hand and management mechanisms on the 
other (Figure 3). The SDR computing system modeling captures the SDR platforms' 
computing resources and the SDR applications' computing requirements. We, 
therefore, suggest equivalent metrics for modeling computing resources and 
requirements: million operations per second (MOPS) and mega-bits per second 
(Mbps), particularly, model the processing and interprocessor data flow capacities and 
requirements. 
 
The ALOE computing resource management is based on two simple time management 
principles: time slots and pipelining (Figure 4). This facilitates the synchronized 
execution of modules on distributed computing resources, while taking advantage of 

 

P1

Internal
Link

External
Link

P2 O3

O1 O2O2O1

Data T O1 to O2

O1 O2

O3 O4

Data T O1 to O2 Data T O1 to O2

Data T O2 to O4 Data T O2 to O4 Data T O2 to O4

O5 O4 O3 O5 O4

(time slot x-1) (time slot x) (time slot x+1)

O5

Objects mapped to 

Processor 1 (P1) 

Objects mapped to 

Processor 2 (P2)

O1 O2 O4

O3

O5

(stage 1) (stage 2) (stage 3) (stage 4)

 
Figure 4 - Time slots and pipelining. 



ALOE Session 1: Introduction to ALOE  April 2011 

 

6 

 

the continuous data flow that characterizes wireless communications. Based on these 
principles, ALOE applies general-purpose mapping algorithms and problem-specific 
cost functions. The cost function implements the computing resource management 
objective or policy while guiding the allocation of computing resources to computing 
requirements in a controlled manner. 

6. Procedure 

The core of the ALOE project is the ALOE framework, which incorporates the 
corresponding interfaces (APIs) for accessing the ALOE tools. We proceed with the 
installation of ALOE before experiencing some of its tools. 

6.1. ALOE Installation 

The latest ALOE releases can be downloaded from the FlexNets web site. This session is 
compatible with ALOE version 1.3. ($ALOE here stands for aloe-1.3.) 
 
The installation of ALOE basically comprises downloading the source code and running 
standard configure and compiling scripts. Before compiling, make sure you have the 
termcap and readline libraries installed on your system. In a Debian-based Linux 
distribution, type the following command in a shell: 
 
 

sudo apt-get install libreadline5-dev  

 

 
If you are running Fedora, use yum to install the libraries: 
 
 

sudo yum install readline-devel 

 

 
Then download, untar and compile ALOE: 
 
 

wget http://flexnets.upc.edu/downloads/source/$ALOE.tar.gz 

tar xzvf $ALOE.tar.gz 

cd $ALOE 

./configure 

make 

sudo make install  

 

 
Remember that you need to substitute $ALOE with an available ALOE distribution; 
aloe-1.3, for instance. 
 
Before running ALOE, we have to tune some kernel parameters to enable larger 
messages buffers. You may edit the sysctl.conf file to make these changes permanent. 
Therefore, add the following lines to /etc/sysctl.conf: 
 



ALOE Session 1: Introduction to ALOE  April 2011 

 

7 

 

 

kernel.msgmnb=1048576 

kernel.msgmax=10485760 

kernel.msgmni=128 

 

 
You need to log in as root for editing the file. Now run sysctl to make the changes 
effective: 
 
 

sudo /sbin/sysctl -p 

 

 
Now you can run a simple example waveform, which is also provided in the download 
package.  

6.2. Running a waveform 

Launch ALOE from the ALOE installation directory ($ALOE/—the directory where you 
extracted and installed the ALOE source package on your PC): 
 
 
sudo runph 

 

 
This will open the ALOE prompt where you can enter ALOE commands. Should you 
experience problems while trying to launch ALOE, the reason may be that a previous 
ALOE session is still running. If this is the case, use 
 
 

sudo runph –f 

 

 
to terminate the process and try launching ALOE again. 
 
ALOE defines different execution states (Figure 5). The following list briefly defines 
these states, numbered from 1 to 5 (as displayed by the execinfo tool): 

- LOADED (1): Initial status after the component has been loaded. The 
component waits until the status changes.  

- INIT (2): During the initialization phase, the object retrieves parameters that 
configure its operation. Some tasks can be performed without real-time 
deadlines, e.g.: compute filter coefficients, look-up-table values, etc. 

- RUN (3): The signal processing is performed in this state with real-time 
constraints that need to be met. The waveform module checks for new samples 
on its input interfaces (typically data vectors), processes these, and sent them 
to the output interfaces.  

- PAUSE (4): The component pauses its execution; data is neither retrieved from 
nor sent to any interface.  



ALOE Session 1: Introduction to ALOE  April 2011 

 

8 

 

- STEP (5): The component executes during one or a finite number of time slots. 
This is useful for debugging modules or entire waveforms. 

 
To load the example waveform, type 
 
 
runph$: phload example 

 

 
Section 5.4 introduced the ALOE computing resource management approach, which 
maps waveform modules to processing elements (PE) as a function of the real-time 
computing constraints. If all computing requirements can be met with the given 
computing capacity, the waveform will run in real-time. Hence, real-time failures 
during execution are not supposed to occur frequently, but rather sporadically. A 
common reason for this is a runtime variation of the waveform’s data processing 
requirement. A deadline violation implies that the corresponding data frame is lost, 
increasing the bit error rate. 
 
After loading the example waveform, the shell informs about the waveform’s 
computing requirements and the platform’s computing resources. Search for the 
following lines: 
 
 

-- c vector -- 

47.00    358.00    572.00    60.00    47.00    47.00  

 

 
The c vector contains the processing requirements in multiply-accumulate operations 
(MACs) per time slot. The processing capacities are modeled by the C vector. The 
processing capacity is 600 million MACs per second (MMAC/S) by default (see 

Read Configuration

Set-up Communications

Set-up Statistics

Register to ALOE

INIT

Close Resources

STOP

analyse message if any

dispatch task if any

returnUnregister ALOE

RUN

LOAD

EXIT

Tx

Status

Status

Initialisation. No real-

time required

Hard real-time

Exit. No real-time 

required Do nothingDo nothing
PAUSE

 
Figure 5 - Waveform execution flow chart. 

 



ALOE Session 1: Introduction to ALOE  April 2011 

 

9 

 

/usr/local/etc/platform.conf, macs field). With a time slot of 10 ms this is equivalent to 
6 million MACs per time slot (MMAC/TS). Since running the waveform on a single PE 
with a processing capacity of 6 MMAC/TS, the vector size is one: 
 
 

-- C vector -- 

6000000.00 

 

 
These numbers indicate that the waveform can be loaded and executed in real-time. 
The mapping information is contained in 
 
 

-- P_m vector -- 

0 0 0 0 0 0 

 

 
It indicates that all six modules of the example waveform have been mapped to a 
single PE, PE0. 
 
You can now initialize and run the waveform: 
 
 

runph$: phinit example 

runph$: phrun example 

 

 
Use the phpause tool to temporary stop (pause) the waveform execution:  
 
 
runph$: phpause example 

 

 
If continuous messages start appearing on your shell, you can still type phpause 

example and press enter to pause the waveform execution. 
 
We use the execinfo tool to verify that each component is in the PAUSE state (status 
4): 
 

 
runph$: execinfo example 

 

 
Observe that the execution time of each module is very low since not performing any 
useful signal processing tasks. Now step one time slot further: 
 
 
runph$: phstep example 

 

 



ALOE Session 1: Introduction to ALOE  April 2011 

 

10 

 

During this time slot each component will process one data block and deliver it to the 
next pipelining stage. Observe—using execinfo—that the time slot counter increased 
by one.  

6.3. Basic resource management tools 

The execinfo tool also informs about the execution time and the real-time 
performance (number of deadlines misses – RT FAULTS) for each component. Real-
time violations depend on the throughput of the waveform and the performance of 
your system, in this case the general-purpose processor. The system’s computing 
capacity thus determines the real-time processing capabilities. For the example 
waveform we should observe that all real-time deadlines have been met. 
 
For illustrative purposes we now force real-time failures by increasing the waveform 
computing demands. We, therefore, configure the source module so that it generates 
more bits: 
 
 

runph$: statset example source numbits 2048 

 

 
The previous command increases the waveform’s throughput requirements. 
 
The shell outputs a message whenever a deadline violation occurs. Try running the 
waveform for one time slot and observe the total number of deadlines misses: 
 
 

runph$: phstep example 

runph$: execinfo example 

 

 
If the number of deadline violations (RT FAULTS) has not increased, increase the 
variable numbits further and run the example waveform during several time slots: 
 
 

runph$: statset example source numbits 1000000 

runph$: phrun example 

 

 
If continuous messages start appearing—indicating real-time violations—type 
phpause example and press enter to pause the waveform execution. If not, pause 
the waveform execution, further increase the numbits variable, and run the waveform 
again. Use the execinfo tool to observe the number of packet losses (RT FAULTS). 
 
You can check all loaded waveforms with 
 
 

runph$: applist 

 

 



ALOE Session 1: Introduction to ALOE  April 2011 

 

11 

 

Unload the example waveform and try loading the example2 waveform: 
 
 

runph$: phstop example 

runph$: phload example2 

 

 
The computing resource requirements of the example2 waveform cannot be met with 
the available computing resources. The resource manager (HWMAN) detects this and 
does not load the waveform. You should observe an output similar to Figure 6. 
 
Figure 6 - Output after trying to load the example2 waveform. 
 

-- c vector -- 

47.00 358000000.00 572000000.00 60000000.00 47000000.00 47.00  

-- B matrix -- 

100000.0  

 

-- C vector -- 

6000000.00  

HWMAN: Map (allocate) software: Mapped with cost 1000000.00 

HWMAN: Error mapping software: Platform does not have enough resources 

for the application 

 Application can't be loaded. 

 

HWMAN: Error mapping software: Error in mapping. 
 

 
Observe that the sum of processing requirements, 
 

47 + 358 000 000 + 572 000 000 + 60 000 000 + 47 000 000 + 47 MACs/TS, 
 

by far exceeds the total processing power of 6 MMAC/TS. 
 
Use Ctrl-C to exit the ALOE prompt. This will unload all loaded applications, if any, 
unregister ALOE and terminate its execution. With this we finish ALOE session 1. Please 
send us your feedback (flexnets.pmt@upc.edu). 

mailto:flexnets.pmt@upc.edu

