/*****************************
* Copyright Henry Minsky (hqm@alum.mit.edu) 1991-2009
*
* This software library is licensed under terms of the GNU GENERAL
* PUBLIC LICENSE
*
* RSCODE is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RSCODE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Rscode. If not, see .
* Commercial licensing is available under a separate license, please
* contact author for details.
*
* Source code is available at http://rscode.sourceforge.net
*
*
* Multiplication and Arithmetic on Galois Field GF(256)
*
* From Mee, Daniel, "Magnetic Recording, Volume III", Ch. 5 by Patel.
*
*
******************************/
#include
#include
#include "ecc.h"
/* This is one of 14 irreducible polynomials
* of degree 8 and cycle length 255. (Ch 5, pp. 275, Magnetic Recording)
* The high order 1 bit is implicit */
/* x^8 + x^4 + x^3 + x^2 + 1 */
#define PPOLY 0x1D
int gexp[512];
int glog[256];
static void init_exp_table (void);
void
init_galois_tables (void)
{
/* initialize the table of powers of alpha */
init_exp_table();
}
static void
init_exp_table (void)
{
int i, z;
int pinit,p1,p2,p3,p4,p5,p6,p7,p8;
pinit = p2 = p3 = p4 = p5 = p6 = p7 = p8 = 0;
p1 = 1;
gexp[0] = 1;
gexp[255] = gexp[0];
glog[0] = 0; /* shouldn't log[0] be an error? */
for (i = 1; i < 256; i++) {
pinit = p8;
p8 = p7;
p7 = p6;
p6 = p5;
p5 = p4 ^ pinit;
p4 = p3 ^ pinit;
p3 = p2 ^ pinit;
p2 = p1;
p1 = pinit;
gexp[i] = p1 + p2*2 + p3*4 + p4*8 + p5*16 + p6*32 + p7*64 + p8*128;
gexp[i+255] = gexp[i];
}
for (i = 1; i < 256; i++) {
for (z = 0; z < 256; z++) {
if (gexp[z] == i) {
glog[i] = z;
break;
}
}
}
}
/* multiplication using logarithms */
int gmult(int a, int b)
{
int i,j;
if (a==0 || b == 0) return (0);
i = glog[a];
j = glog[b];
return (gexp[i+j]);
}
int ginv (int elt)
{
return (gexp[255-glog[elt]]);
}