/* Generate metric tables for a soft-decision convolutional decoder * assuming gaussian noise on a PSK channel. * * Works from "first principles" by evaluating the normal probability * function and then computing the log-likelihood function * for every possible received symbol value * * Copyright 1995 Phil Karn, KA9Q */ /* Symbols are offset-binary, with 128 corresponding to an erased (no * information) symbol */ #define OFFSET 128 #include #include /* Normal function integrated from -Inf to x. Range: 0-1 */ #define normal(x) (0.5 + 0.5*erf((x)/M_SQRT2)) /* Logarithm base 2 */ #define log2(x) (log(x)*M_LOG2E) /* Generate log-likelihood metrics for 8-bit soft quantized channel * assuming AWGN and BPSK */ int gen_met( int mettab[2][256], /* Metric table, [sent sym][rx symbol] */ int amp, /* Signal amplitude, units */ double noise, /* Relative noise voltage */ double bias, /* Metric bias; 0 for viterbi, rate for sequential */ int scale /* Scale factor */ ){ double n; int s,bit; double metrics[2][256]; double p0,p1; /* Zero is a special value, since this sample includes all * lower samples that were clipped to this value, i.e., it * takes the whole lower tail of the curve */ p1 = normal(((0-OFFSET+0.5)/amp - 1)/noise); /* P(s|1) */ /* Prob of this value occurring for a 0-bit */ /* P(s|0) */ p0 = normal(((0-OFFSET+0.5)/amp + 1)/noise); metrics[0][0] = log2(2*p0/(p1+p0)) - bias; metrics[1][0] = log2(2*p1/(p1+p0)) - bias; for(s=1;s<255;s++){ /* P(s|1), prob of receiving s given 1 transmitted */ p1 = normal(((s-OFFSET+0.5)/amp - 1)/noise) - normal(((s-OFFSET-0.5)/amp - 1)/noise); /* P(s|0), prob of receiving s given 0 transmitted */ p0 = normal(((s-OFFSET+0.5)/amp + 1)/noise) - normal(((s-OFFSET-0.5)/amp + 1)/noise); #ifdef notdef printf("P(%d|1) = %lg, P(%d|0) = %lg\n",s,p1,s,p0); #endif metrics[0][s] = log2(2*p0/(p1+p0)) - bias; metrics[1][s] = log2(2*p1/(p1+p0)) - bias; } /* 255 is also a special value */ /* P(s|1) */ p1 = 1 - normal(((255-OFFSET-0.5)/amp - 1)/noise); /* P(s|0) */ p0 = 1 - normal(((255-OFFSET-0.5)/amp + 1)/noise); metrics[0][255] = log2(2*p0/(p1+p0)) - bias; metrics[1][255] = log2(2*p1/(p1+p0)) - bias; #ifdef notdef /* The probability of a raw symbol error is the probability * that a 1-bit would be received as a sample with value * 0-128. This is the offset normal curve integrated from -Inf to 0. */ printf("symbol Pe = %lg\n",normal(-1/noise)); #endif for(bit=0;bit<2;bit++){ for(s=0;s<256;s++){ /* Scale and round to nearest integer */ mettab[bit][s] = floor(metrics[bit][s] * scale + 0.5); #ifdef notdef printf("metrics[%d][%d] = %lg, mettab = %d\n", bit,s,metrics[bit][s],mettab[bit][s]); #endif } } }